Vu Xuan Hoa, Pham Thi Thu Ha, Tran Thu Trang

Main Article Content

Abstract

The photothermal effect of gold nanostructures has been majority known as the nanothermal effect of gold clusters under laser irradiation. However, there are still many challenges to measuring the local temperature generated by a single nano gold in a complex media. In this work, a gold magnetic nanocrescent (G-MNC) has been studied, it composed of a superparamagnetic iron oxide core and gold shell with a size of 170 nm in glycerol/water (80:20), under 650 nm laser irradiation. Using rotational scattering correlation spectroscopy (RSCS), a sophisticated technique has been developed, the local temperature generated by only single magnetic nanocrescent was measured. The dependence of the heat generation according to the power of the laser shows that the heat generated by the gold NC is proportional to the power of the laser, and the maximum temperature was 19.5 oC, corresponding to the laser power was 29×103 W.cm-2. Under using the proper laser irradiation to the plasmon resonance, G-MNCs act as nano thermometers. The photothermal effect of the single G-MNC was implemented in a mixing solution of glycerol and water.

Keywords: Gold-magnetic nanocrescent, Local temperature, Brownian motion, Surface plasmon resonance, Dark-filed microscope.

References

[1] H. N. Tran et al., Optical Nanoparticles: Synthesis and Biomedical Application, Adv. Nat. Sci. Nanosci. Nanotechnol., Vol. 6, No. 2, 2015, pp. 23002, https://doi.org/10.1088/2043-6262/6/2/023002.
[2] P. Tuersun, X. Han, Optical Absorption Analysis and Optimization of Gold Nanoshells, Appl. Opt., Vol. 52,
No. 6, 2013, pp. 1325-1329, https://doi.org/10.1364/AO.52.001325.
[3] G. Palermo, D. Pagnotto, L. Ricciardi, L. Pezzi, M. L. Deda, A. D. Luca, Thermoplasmonic Effects in Gain-Assisted Nanoparticle Solutions, J. Phys. Chem. C, Vol. 121, No. 43, 2017, pp. 24185-24191, https://doi.org/10.1021/acs.jpcc.7b08186.
[4] R. Khursheed et al., Biomedical Applications of Metallic Nanoparticles in Cancer: Current Status and Future Perspectives, Biomedicine & Pharmacotherapy, Vol. 150, No. 112951, 2022, pp. 1-24, https://doi.org/10.1016/j.biopha.2022.112951.
[5] S. Jeong, J. Young Park, J. Min Kim, Y. Kim, Photothermally Enhanced Hollow Gold Nanopigment for Water Evaporation and Sterilization Achieved Via A Photothermal Effect, Buil. And Envi., Vol. 229, No. 109970, 2023, pp. 1-8, https://doi.org/10.1016/j.buildenv.2022.109970.
[6] Y. Shen, Y. Zou, B. Bie, C. Dong, Y. Lv, Combining Dual-Targeted Liquid Metal Nanoparticles with Autophagy Activation and Mild Photothermal Therapy to Treat Metastatic Breast Cancer and Inhibit Bone Destruction,
A. Bio., Vol. 157, 2023, pp. 578-592, https://doi.org/10.1016/j.actbio.2022.11.044.
[7] M. Sriram, K. Zong, S. R. C. Vivekchand, J. J. Gooding, Single Nanoparticle Plasmonic Sensors, Sensors (Switzerland), Vol. 15, No. 10, 2015, pp. 25774-25792, https://doi.org/10.3390/s151025774.
[8] X. Huang, M. A. E. Sayed, Plasmonic Photo-thermal Therapy (PPTT), Alexandria J. Med., Vol. 47, No. 1, 2011, pp. 1-9, https://doi.org/10.1016/j.ajme.2011.01.001.
[9] R. S. Riley, E. S. Day, Gold Nanoparticle-mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer Treatment, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, Vol. 9, No. 4, 2017, pp. 1-16, https://doi.org/10.1002/wnan.1449.
[10] A. S. Kostyukov, A. E. Ershov, V. S. Gerasimov, S. A. Filimonov, I. L. Rasskazov, S. V. Karpov, Super-Efficient Laser Hyperthermia of Malignant Cells with Core-Shell Nanoparticles Based on Alternative Plasmonic Materials, J. Quant. Spectrosc. Radiat. Transf., Vol. 236, 2019, pp. 106599, https://doi.org/10.1016/j.jqsrt.2019.106599.
[11] G. Baffou, R. Quidant, C. Girard, Heat Generation In Plasmonic Nanostructures : Influence of Morphology,
Vol. 94, No. 15, 2009, pp. 1-3, https://doi.org/10.1063/1.3116645.
[12] G. Baffou, R. Quidant, Thermo-plasmonics: Using Metallic Nanostructures as Nano-sources of Heat, Laser Photonics Rev., Vol. 7, No. 2, 2013, pp. 171-187, https://doi.org/10.1002/lpor.201200003.
[13] G. L. Liu, Y. Lu, J. Kim, J. C. Doll, L. P. Lee, Magnetic Nanocrescents as Controllable Surface-enhanced Raman Scattering Nanoprobes for Biomolecular Imaging, Adv. Mater., Vol. 17, No. 22, 2005, pp. 2683-2688, https://doi.org/10.1002/adma.200501064.
[14] C. Zheng et al., Theoretical Study on Narrow Fano Resonance of Nanocrescent for the Label-free Detection of Single Molecules and Single Nanoparticles, RSC Adv., Vol. 8, No. 7, 2018, pp. 3381-3391, https://doi.org/10.1039/c7ra12666b.
[15] D. Bang et al., Asymmetric Nanocrescent Antenna on Upconversion Nanocrystal, Nano Lett., Vol. 17, No. 11, 2017, pp. 6583-6590, https://doi.org/10.1021/acs.nanolett.7b02327.
[16] Z. Liao, B. Zhou, Y. Huang, S. Li, S. Wang, W. Wen, Fano Resonance Properties of Gold Nanocrescent Arrays, Appl. Opt., Vol. 53, No. 28, 2014, pp. 6431, https://doi.org/10.1364/AO.53.006431.
[17] Z. Li et al., The Fabrication of Long-range Ordered Nanocrescent Structures Based on Colloidal Lithography and Parallel Imprinting, Nanotechnology, Vol. 24, No. 10, 2013, pp. 1-9,
https://doi.org/10.1088/0957-4484/24/10//105307.
[18] G. V. P. Kumar, Near-field Optical Resonance and Enhancement of A Plasmonic Nanocrescent Cylinder Tuned by A Proximal Plasmonic Nanostructure, J. Opt. Soc. Am. B, Vol. 29, No. 4, 2012, pp. 594, https://doi.org/10.1364/JOSAB.29.000594.
[19] X. H. Vu, M. Levy, T. Barroca, H. N. Tran, E. Fort, Gold Nanocrescents for Remotely Measuring and Controlling Local Temperature, Nanotechnology, Vol. 24, No. 32, 2013,
https://doi.org/10.1088/0957-4484/24/32/325501.
[20] X. H. Vu et al., Measuring of Translational and Rotational Local Temperatures of A Single Gold Nanocrescent in Glycerol, Optik, Vol. 219, No. 12, 2019, pp. 165174, https://doi.org/10.1016/j.ijleo.2020.165174.
[21] M. F. Barroso et al., Gold Nanoparticles Covalently Assembled Onto Vesicle Structures as Possible Biosensing Platform, Beilstein J. Nanotechnol., Vol. 7, No. 5, 2016, pp. 655-663, https://doi.org/10.3762/bjnano.7.58.
[22] I. F. Sbalzarini, P. Koumoutsakos, Feature Point Tracking and Trajectory Analysis for Video Imaging in Cell Biology, J. Struct. Biol., Vol. 151, No. 2, 2005, pp. 182-195, https://doi.org/10.1016/j.jsb.2005.06.002.
[23] N. S. Cheng, Formula for the Viscosity of A Glycerol-water Mixture, Ind. Eng. Chem. Res., Vol. 47, No. 9, 2008, pp. 3285-3288, https://doi.org/10.1021/ie071349z.
[24] Y. Grasselli, G. Bossis, R. Morini, Translational and Rotational Temperatures of A 2D Vibrated Granular Gas in Microgravity, Eur. Phys. J. E, Vol. 38, No. 2, 2015, pp. 1-10, https://doi.org/10.1140/epje/i2015-15008-5.
[25] Y. Zhang, A. Barhoumi, J. B. Lassiter, N. J. Halas, Orientation-preserving Transfer and Directional Light Scattering from Individual Light-bending Nanoparticles, Nano Lett., Vol. 11, No. 4, 2011, pp. 1838-1844, https://doi.org/10.1021/nl2008357.
[26] N. A. Mirin, N. J. Halas, Light-Bending Nanoparticles, Nano Lett., Vol. 9, No. 3, 2009, pp. 1255-1259, https://doi.org/10.1021/nl900208z.
[27] H. Ueno et al., Simple Dark-field Microscopy with Nanometer Spatial Precision and Microsecond Temporal Resolution, Biophys. J., Vol. 98, No. 9, 2010, pp. 2014-2023, https://doi.org/10.1016/j.bpj.2010.01.011.
[28] J. Renn, Einstein’s Invention of Brownian Motion, Ann. Der Phys., Vol. 517, No. S1, 2005, pp. 23-37, https://doi.org/10.1002/andp.200410131.
[29] J. Stepišnik, C. Mattea, S. Stap, A. Mohorič, Molecular Velocity Auto-correlations in Glycerol/Water Mixtures Studied by NMR MGSE Method, Vol. 553, No. 124171, 2020, pp. 1-12, https://doi.org/10.1016/j.physa.2020.124171.