Do Thi Kim Anh

Main Article Content

Abstract

 


The pressure effect on the thermopower has been investigated for the Bi1.8Sb0.2Te3.0  alloys. We have found an anisotropic pressure dependence on the thermopower for p- and n-type Bi1.8Sb0.2Te3.0 at room temperature. Along a-axis, for p-type, the thermopower value increased with increase of pressure at a rate of 13.9 %/Gpa, whereas, along c-axis, itkeeps approximately constant.. The absolue value of the thermopower decreased with pressure along both a- and c-axis for n-type. The power factor increased largely with increase of pressure for p-type Bi1.8Sb0.2Te3.0, while it is approximately constant for n-type.


 

Keywords: Thermoelectric materials, high pressure, eletrical resistivity, thermopower.

References

[1] P. L. Lee, L. Pincherle, The Electronic Band Structure of Bismuth Telluride, Proc. Phys. Soc., Vol. 81, 1963,
pp. 461, https://iopscience.iop.org/article/10.1088/0370-1328/81/3/310.
[2] H. Kohler, Non-Parabolicity of the Highest Valence Band of Bi2Te3 from Shubnikov-de Haas Effect, Phys. Status Solidi b, Vol. 74, 1976, pp. 591, https://doi.org/10.1002/pssb.2220740218.
[3] S. Katsuki, The Band Structure of Bismuth Telluride, J. Phys. Soc. Jpn, Vol. 26, 1969, pp. 58, https://doi.org/10.1143/JPSJ.26.58.
[4] C. Y. Li, A. L. Ruoff, C. W. Spencer, Effect of Pressure on the Energy Gap of Bi2Te3, J. Appl. Phys., Vol. 32, 1961, 1733, https://doi.org/10.1063/1.1728426
[5] L. R. Testardi, J. N. B. Jr, F. J. Donahoe, Transport Properties of P-type Bi2Te3 Sb2Te3 Alloys in the Temperature Range 80–370°K, J. Phys. Chem. Solid., Vol. 23, 1962, pp. 1209, https://doi.org/10.1016/0022-3697(62)90168-3.
[6] N. T. Huong, Y. Setou, G. Nakamoto, M. Kurisu, T. Kajihara, H. Mizukami, S. Sano, High Thermoelectric Performance at Low Temperature of p-Bi1.8Sb0.2Te3.0 Grown by the Gradient Freeze Method from Te-rich Melt,
J. Alloys Compd., Vol. 368, 2004, pp. 44, https://doi.org/10.1016/j.jallcom.2003.08.066.
[7] X. He, T. Guan, X. Wang, B. Feng, P. Cheng, L. Chen, Y. Li, K. Wu, Highly Tunable Electron Transport in Epitaxial Topological Insulator (Bi1-xSbx)2Te3 Thin Films, Appl. Phys. Lett, Vol. 101, 2012, pp. 123111, https://doi.org/10.1063/1.4754108.
[8] J. Kellner, M. Eschbach, J. Kampmeier, M. Lanius, E. Mlyńczak, G. Mussler, B. Holländer, L. Plucinski,
M. Liebmann, D. Grützmacher, C. M. Schneider, M. Morgenstern, Tuning the Dirac Point to the Fermi Level in The Ternary Topological Insulator (Bi1−xSbx)2Te3, Appl. Phys. Lett, Vol. 107, 2015, pp. 251603, https://doi.org/10.1063/1.4938394.
[9] D. B. Hyun, J. S. Hwang, T. S. Oh, J. D. Shim, N. V. Kolomoets, Electrical Properties of the 85% Bi2Te3-15% Bi2Se3 Thermoelectric Material Doped with SbI3 and CuBr, J. Phys. Chem. Solids, Vol. 59, 1998, pp. 1039, https://doi.org/10.1016/S0022-3697(97)00242-4.
[10] T. Thonhauser, T. J. Scheidemantel, J. 0. Sofo, J. V. Badding, G. D. Mahan, Thermoelectric Properties of Sb2Te3 under Pressure and Uniaxial Stress, Phys. Rev. B, Vol. 68, 2003, pp. 085201, https://doi.org/10.1103/PhysRevB.68.085201.
[11] T. Thonhauser, Influence of Negative Pressure on Thermoelectric Properties of Sb2Te3, Solid State Commun., Vol. 129, 2004, pp. 249, https://doi.org/10.1016/j.ssc.2003.10.006.
[12] T. J. Scheidemantel, J. O. Sofo, Towards a First Principles Determination of Transport Coefficients, in Chemmistry, Physics and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride, Edited by M. G. Kanatzidis, T. P. Hogan, S. D. Mahanti (Kluwer Academic/Plenum Publishers, New York, 2003).
[13] N. B. Brandt, M. Yu Lavrenyuk, N. Ya Minina, A. M. Savin, W. Kraak, R. Herrmann, Thermal E. M. F. Anomalies Due to Axial Compression and the Band Structure of Bi1-xSbx (x = 0.27) Alloys Phys. Status Solidi b, Vol. 143, 1987, pp. 601, https://doi.org/10.1002/pssb.2221430220.
[14] Y. T. Tseng, G. X. Tessema, M. J. Skove, The Effect of Elastic Strain on the Resistance Anomaly and the Thermopower of NbSe3 Solid State Commun., Vol. 94, 1995, pp. 867, https://doi.org/10.1016/0038-1098(95)00140-9.