Bui Nguyen Quoc Trinh

Main Article Content

Abstract

We investigated highly (100)-oriented PZT films directly grown on Pt films coated on RuO2/SiO2/Si substrates via sputtering method. By controlling the preferred (100) orientation volume of the Pt films, we confirmed the effectiveness of high (100) orientation of Pt films suitable for the growth of highly (100)-oriented PZT films. Particularly, as the (100) orientation region of Pt film is larger than 90%, the PZT film with 95% of (100) orientation region can be formed, without using any seed layer as well as epitaxial growth process. We found that a highly (100)-oriented PZT film possesses large grains with a size of 150 nm, and it possesses twice remanent polarization of 58 mC/cm2 and coercive electric field of 148 kV/cm with the relatively low leakage current less than 10-6 A/cm2 at the applied voltage of ± 4 V. One can convince that the technological process for highly (100)-oriented PZT films is simple, and it is promising for ferroelectric and piezoelectric applications in wide ranges.  


 

Keywords: Pt, PZT, ferroelectric, thin film, sputtering.

References

[1] J. F. Scott, C.A. P. de Araujo, Ferroelectric Memories, Science, Vol. 246, 1989, pp. 1400-1405, https://doi.org/ 10.1126/science.246.4936.140.
[2] O. Auciello, J. F. Scott, R. Ramesh, The Physics of Ferroelectric Memories, Phys. Today, Vol. 51, 1998,
pp. 22-27, https://doi.org/10.1063/1.882324.
[3] B. N. Q. Trinh, S. Horita, Operation of Ferroelectric Gate Field-Effect Transistor Memory with Intermediate Electrode using Polycrystalline Capacitor and Metal–Oxide–Semiconductor Field-Effect Transistor, Japanese Journal of Applied Physics, Vol. 45, 2006, pp. 7341-7344, https://doi.org/10.1143/JJAP.45.7341.
[4] P. Khaenamkaewa, S. Muensit, I. K. Bdikin, A. L. Kholkin, Effect of Zr/Ti ratio on the Microstructure and Ferroelectric Properties of Lead Zirconate Titanate Thin Films, Materials Chemistry and Physics, Vol. 102, 2007,
pp. 159-164, https://doi.org/10.1016/j.matchemphys.2006.11.019.
[5] T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Preparation of Pb(Zr,Ti)O3 thin Films on Electrodes Including IrO2, Appl. Phys. Lett., Vol. 65, 1994, pp. 1522-1524, https://doi.org/10.1063/1.112031.
[6] C. J. Kim, D. S. Yoon, J. S. Lee, C. G. Choi, K. No, A Study on the Microstructure of Preferred Orientation of Lead Zirconate Titanate (PZT) Thin Films, J. Mater. Res., Vol. 12, 1997, pp. 1043-1047, https://doi.org/10.1557/JMR.1997.0145.
[7] L. Jiankanga, Y. Xia, Microstructure and Electrical Properties o Pb(Zr0.52Ti0.48)O3 Ferroelectric Films on Different Bottom Electrodes, Materials Letters, Vol. 58, 2004, pp. 3447-3450, https://doi.org/10.1016/j.matlet.2004.03.053.
[8] H. Ha, B. N. Q. Trinh, Epitaxial-like Growth of Solution-processed PbZr0.4Ti0.6O3 Thin Film on Single-crystal Nb-doped SrTiO3 Substrate, VNU Journal of Science: Mathematics – Physics, Vol. 33, 2017, pp. 36-44, https//doi.org/ 10.25073/2588-1124/vnumap.4244.
[9] B. N. Q. Trinh, S. Horita, Control of Preferential Orientation of Platinum Films on RuO2/SiO2/Si Substrates by Sputtering, Japanese Journal of Applied Physics, Vol. 45, 2006, pp. 8810-8816, https://doi.org/10.1143/JJAP.45.8810.
[10] B. E. Warren, X-ray Diffraction, Dover Publications, New York, 1990.
[11] G. C. A. M. Janssen, Stress and Strain in Polycrystalline Thin Films, Thin Solid Films, Vol. 515, 2007,
pp. 6654-6664, https://doi.org/10.1016/j.tsf.2007.03.007.
[12] D. Ambika, V. Kumar, K. Tomioka, I. Kanno, Deposition of PZT Thin Films with {001}, {110}, and {111} Crystallographic Orientations and Their Transverse Piezoelectric Characteristics, Adv. Mat. Lett., Vol. 3, 2012,
pp. 102-106, https://doi.org/10.5185/amlett.2011.7281.
[13] G. Tan, S. H. Kweon, I. Kanno, Piezoelectric Properties of Epitaxial Pb(Zr,Ti)O3 Thin Films Grown on Si Substrates by the Sol–gel Method, Thin Solid Films, Vol. 764, 2023, pp. 139612, https://doi.org/10.1016/j.tsf.2022.139612.
[14] K. Ueda, S. H. Kweon, H. Hida, Y. Mukouyama, I. Kanno, Transparent Piezoelectric Thin-film Devices: Pb(Zr, Ti)O3 Thin Films on Glass Substrates, Sensors and Actuators A: Physical, Vol. 327, 2021, pp. 112786, https://doi.org/10.1016/j.sna.2021.112786.
[15] Y. Yu, M. Lai, L. Lu, Highly (100) Oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 Films Grown on Amorphous Substrates by Pulsed Laser Deposition, Appl. Phys. A, Vol. 88, 2007, pp. 365-370, https://doi.org/10.1007/s00339-007-3968-y.
[16] S. Yokoyama, Y. Honda, H. Morioka, S. Okamoto, T. Iijima, H. Matsuda, K. Saito, H. Funakubo, Comparison Study of (001)-/(100)-Oriented Epitaxial and Fiber Textured Pb(Zr,Ti)O3 Thick Films Prepared by MOCVD, Integrated Ferroelectrics, Vol. 64, 2004, pp. 217-225, https://doi.org/10.1080/10584580490894366.
[17] R. Thomas, S. Mochizuki, T. Mihara, T. Ishida, Preparation of Pb(Zr,Ti)O3 Thin Films by RF-magnetron Sputtering with Single Stoichiometric Target: Structural and Electrical Properties, Thin Solid Films, Vol. 413, 2002,
pp. 65-75, https://doi.org/10.1016/S0040-6090(02)00354-1.
[18] C. C. Mardare, E. Joannia, A. I. Mardare, J. R. A. Fernandes, C. P. M. de Sa´, P. B. Tavarese, Effects of Adhesion Layer (Ti Or Zr) and Pt Deposition Temperature on the Properties of PZT Thin Films Deposited by RF Magnetron Sputtering, Applied Surface Science, Vol. 243, 2005, pp. 113-124, https://doi.org/10.1016/j.apsusc.2004.09.050.
[19] S. Horita, B. N. Q. Trinh, Disturb-Free Writing Operation for Ferroelectric-Gate Field-Effect Transistor Memories with Intermediate Electrodes, IEEE Transactions on Electron Devices, Vol. 56, 2009, pp. 3090-3096, https://doi.org/10.1109/TED.2009.2032744.