Characterizations of Cr3+- doped SnO2 Powders Via a Hydrolysis Method
Main Article Content
Abstract
In this work, the effect of annealing temperature and Cr3+ concentration on the structural and optical properties of the SnO2 host crystals has been investigated. The Cr-doped SnO2 samples were synthesized by a simple hydrolysis method, using SnCl4.5H2O as the host precursor and CrCl3.6H2O as the source of dopant. X-ray diffraction and Raman scattering spectra analysis revealed a tetragonal rutile structure of Cr3+-doped SnO2 samples. The Cr3+ concentration and annealing temperature have no influence on the lattice parameters of the SnO2 crystals, whereas affected the appearance and intensity of the Raman modes. The optical properties of the synthesized samples were explored by photoluminescence (PL) and photoluminescence excitation (PLE) analysis. Interestingly, besides the emission peaks related to the SnO2, emission transitions within Cr3+ ions in the octahedral field of SnO2 were observed.
References
[2] S. G. Lee, S. B. Han, W. J. Lee, K. W. Park, Effect of Sb-Doped SnO2 Nanostructures on Electrocatalytic Performance of a Pt Catalyst for Methanol Oxidation Reaction, Catalysts, Vol. 10, No. 8, 2020, pp. 2-15, https://doi.org/10.3390/catal10080866.
[3] N. N. Dinh, M. C. Bernard, A. H. Goff, T. Stergiopoulos, P. Falaras, Photoelectrochemical Solar Cells Based on SnO2 Nanocrystalline Films, C. R. Chimie, Vol. 9, No. 5-6, 2006, pp. 676-683, https://doi.org/10.1016/j.crci.2005.02.042.
[4] K. Manikandan, S. Dhanuskodi, N. Maheswari, G. Muralidharan, SnO2 Nanoparticles for Supercapacitor Application, AIP Conference Proceedings, Vol. 1731, No. 050048, 2016, pp. 1-3, http://dx.doi.org/10.1063.4947702.
[5] Ginley, S. David, Transparent Conducting Oxides Based on Tin Oxide, R. Kykyneshi, J. Zeng, D. P. Cann, Handbook of Transparent Conductors, 2011, pp. 171-191, http://dx.doi.org/10.1007/978-1-4419-1638-96.
[6] Bhawna, A. K. Choudhary, A. Gupta, S. Kumar, P. Kumar, R. P. Singh, V. Kumar, Synthesis, Antimicrobial Activity, and Photocatalytic Performance of Ce Doped SnO2 Nanoparticles. Front. Nanosci., Vol. 2, No. 595352, 2020, pp. 1-7, http://dx.doi.org/10.3389/fnano.2020.595352.
[7] P. P. Filippatos, N. Kelaidis, M. Vasilopoulou, D. Davazoglou, A. Chroneos, Defect Processes in Halogen Doped SnO2, Appl. Sci, Vol. 11, No. 2, 2021, pp. 1-14, https://doi.org/10.3390/app11020551.
[8] S. Naz, I. Javid, S. Konwar, K. Surana, P. K. Singh, M. Sahni, B. Bhattacharya, A Simple Low-cost Method for Synthesis of SnO2 Nanoparticles and Its Characterization, SN Appl. Sci, Vol. 2, No. 5, 2020, https://doi.org/10.1007/s42452-020-2812-2.
[9] F. Zahmatkeshani, M. Tohidi, Synthesis of SnO2, Zn-doped SnO2 and Zn2SnO4 Nanostructure-based Hierarchical Architectures by using Deep Eutectic Precursors and their Photocatalytic Application. Cryst. Eng. Comm,
Vol. 21, 2019, pp. 6758-6771, https://doi.org/10.1039/c9ce00886a.
[10] G. H. Lee, Change in the Morphology of SnO2 Crystals Synthesized by Thermal Evaporation of SnO2 Powder Mixed with Graphite in Ambient Air, J. Ceram. Soc. JAPAN, Vol. 126, No. 7, 2018, pp. 547-550, http://doi.org/10.2109/jcersj2.18047.
[11] A. K. Gangwar, R. Godiwal, J. Jaiswal, V. Baloria, P. Pal, G, Gupta, & P. Singh, Magnetron Configurations Dependent Surface Properties of SnO2 Thin Films Deposited by Sputtering Process, Vacuum, Vol. 177,
No. 109353, 2020, http://doi.org/10.1016/j.vacuum.2020.109353.
[12] B. T. Sone, E. Manikandan, A. G. Fakim, M. Maaza, Single-phase α-Cr2O3 Nanoparticles’ Green Synthesis using Callistemon Viminalis’ Red Flower Extract, Green Chem. Lett. Rev, Vol. 9, No. 2, 2016, pp. 85-90, https://doi.org/10.1080/17518253.2016.1151083.
[13] S. Asaithambi, P. Sakthivel, M. Karuppaiah, Y. Hayakawa, A. Loganathan, G. Ravi, Improved Photocatalytic Performance of Nanostructured SnO2 Via Addition of Alkaline Earth Metals (Ba2+, Ca2+ and Mg2+) under Visible Light Irradiation. Appl. Phys. A, Vol. 126, No. 4, 2020, pp. 1-12, https://doi.org/10.1007/s00339-020-3441-8.
[14] A. Loganathan, D. Manoharan, N. V. Jaya, Defect Structure and Optical Phonon Confinement in Ultrananocrystalline BixSn1-xO2 (x = 0, 0.03, 0.05, 0.08) Synthesized by Sonochemical Method, Phys. Chem. Chem. Phys., Vol. 18, 2016, pp. 5995-6004, https://doi.org/10.1039/C5CP06214D.
[15] P. S. Peercy, B. Morosin, Pressure and Temperature Dependences of the Raman-Active Phonons in SnO2, Phys. Rev. B, Vol. 7, No. 2779, 1973, pp. 2779-2786, https://doi.org/10.1103/PhysRevB.7.2779.
[16] F. Medjaldi, A. Bouabellou, Y. Bouachiba, A. Taabouche, K. Bouatia, H. Serrar, Study of TiO2, SnO2 and Nanocomposites TiO2:SnO2 Thin Films Prepared by Sol-gel Method: Successful Elaboration of Variable–refractive Index Systems, Mater. Res. Express, Vol. 7, No. 016439, 2020, https://doi.org/10.1088/2053-1591/ab6c0c.
[17] N. Salah, S. Habib, A. Azam, M. S. Ansari, W. M. A. Shawafi, Formation of Mn-doped SnO2 Nanoparticles Via the Microwave Technique: Structural, Optical and Electrical Properties, Nanomater, Nanotechnol, 2016, https://doi.org/10.5772/62520.
[18] A. Diéguez, A. R. Rodrı́guez, A. Vilà, J. R. Morante, The Complete Raman Spectrum of Nanometric SnO2 Particles. J. Appl. Phys., Vol. 90, No. 3, 2001, pp. 1550-1557, https://doi.org/10.1063/1.1385573.
[19] S. Roy, A. G. Joshi, S. Chatterjee, A. K. Ghosh, Local Symmetry Breaking in SnO2 Nanocrystals with Cobalt Doping and Its Effect on the Optical Properties, Nanoscale, Vol. 10, No. 22, 2018, pp. 10664-10682, https://doi.org/10.1039/C7NR07427A.
[20] N. Ahmad, S. Khan, M. M. N. Ansari, Exploration of Raman Spectroscopy, Dielectric and Magnetic Properties of (Mn, Co) Co-doped SnO2 Nanoparticles, Phys. Rev. B Condens. Matter, Vol. 558, 2019, pp. 131-141, https://doi.org/10.1016/j.physb.2019.01.044.
[21] N. Bhardwaj, S. Kuriakose, S. Mohapatra, Structural and Optical Properties of SnO2 Nanotowers and Interconnected Nanowires Prepared by Carbothermal Reduction Method, J. Alloys Compd, Vol. 592, 2014,
pp. 238-243, https://doi.org/10.1016/j.jallcom.2013.12.268.
[22] W. B. H. Othmen, B. Sieber, H. Elhouichet, A. Addad, B. Gelloz, M. Moreau, S. Szunerits, R. Boukherroub, Effect of High Fe Doping on Raman Modes and Optical Properties of Hydrothermally Prepared SnO2 Nanoparticles, Materials Science in Semiconductor Processing, Vol. 77, 2018, pp. 31-309, https://doi.org/10.1016/j.mssp.2017.12.014.
[23] T. Lan, C. W. Li, B. Fultz, Phonon Anharmonicity of Rutile SnO2 Studied by Raman Spectrometry and First Principles Calculations of the Kinematics of Phonon-phonon Interactions, Phys. Rev. B, Vol. 86, No. 13, 2012,
pp. 134302¬¬_1-134302_7, https://doi.org/10.1103/PhysRevB.86.134302.
[24] T. T. Loan, N. N. Long, Synthesis and Characterization of Ni2+-doped SnO2 Powders, VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 4, 2019, pp. 33-40, https://doi.org/10.25073/2588-1124/vnumap.4356.
[25] R. Liu, Y. Chen, F. Wang, L. Cao, A. Pan, G. Yang, T. Wang, B. Zou, Stimulated Emission from Trapped Excitons in SnO¬2 Nanowires, Physica E, Vol. 39, No. 2, 2007, pp. 223-229, https://doi.org/10.1016/j.physe.2007.04.009.
[26] T. T. Loan, N. N. Long, Synthesis and Optical Properties of ZnAl¬2O4/Al2O3:Cr3+ Composite Materials, VNU Journal of Science: Mathematics – Physics, Vol. 34, No. 1, 2018, pp. 1-7, https://doi.org/10.25073/2588-1124/vnumap.4253.
[27] T. T. Loan, N. A. Bang, V. H. Huong, N. N. Long, Effect of Cr3+ Concentration on Structural and Optical Properties of TiO2:Cr3+ Anatase and Rutile Phases, Opt. Mater, Vol. 69, 2017, pp. 30-37, http://dx.doi.org/10.1016/j.optmat.2017.04.005.