Dao Thi Thuy Nguyet, Nguyen Phuc Duong, Luong Ngoc Anh

Main Article Content

Abstract

In this work, H2 gas sensors were prepared using nickel zinc ferrite NiFe2O4 and Ni0.5Zn0.5Fe2O4 nanoparticles, then the hydrogen gas sensing performance of the sensors was tested. The nickel zinc ferrite nanoparticles were synthesized by chemical co-precipitation combined with thermal annealing. Crystalline Structure and morphology characterization of synthesized powders was made by using X-ray diffraction (XRD) and Transmission electron microscopy (TEM) analysis, respectively. Nano powder resulting from milling was used to prepare gas sensing elements in pellet form. The gas-sensing properties were studied in the presence of hydrogen as test gases. The gas response was found to be strongly influenced by the Zn substitution doping concentration in NiFe2O4. A significant high sensitivity of ~ 90% was found for the compound of Ni0.5Zn0.5Fe2O4. in the presence of 500 ppm H2 at the operating temperature of 250 °C.


 


 


Keywords: Nickel zinc ferrite, H2 sensing, gas properties, nanoparticles, co-precipitation.

References

[1] M. A. Njoroge, N. M. Kirimi, K. P. Kuria, Spinel Ferrites Gas Sensors: A Review of Sensing Parameters, Mechanism and The Effects of Ion Substitution, Critical Reviews in Solid State and Materials Sciences, Vol. 47, No. 6, 2022, pp. 807-836, https//doi.org/10.1080/10408436.2021.1935213.
[2] K. Wu, J. Li, C. Zhang, Zinc Ferrite Based Gas Sensors: A Review, Ceramics International, Vol. 45, No. 9, 2019, pp. 11143-11157, https//doi.org/10.1016/j.ceramint.2019.03.086.
[3] R. M. Shedam, P. P. Kashid, S. N. Mathad, R. B. Deshmukh, M. R. Shedam, A. B. Gadkari, Ferrites Gas Sensors: A Review, Physics and Chemistry of Solid State, Vol. 23, No. 3, 2022, pp. 626-640, https//doi.org/10.15330/pcss.23.3.626-640.
[4] A. Šutka, K. A. Gross, Spinel Ferrite Oxide Semiconductor Gas Sensors, Sensors and Actuators B: Chemical,
Vol. 222, 2016, pp. 95-105, https//doi.org/10.1016/j.snb.2015.08.027.
[5] N. Rezlescu, C. Doroftei, E. Rezlescu, P. D. Popa, Lithium Ferrite for Gas Sensing Applications, Sens Actuators B Chem, Vol. 133, No. 2, 2008, pp. 420-425, https//doi.org/10.1016/j.snb.2008.02.047.
[6] A. Jain, R. K. Baranwal, A. Bharti, Z. Vakil, C. S. Prajapati, Study of Zn-Cu Ferrite Nanoparticles for LPG Sensing’, The Scientific World Journal, Vol. 2013, 2013, https//doi.org/10.1155/2013/790359.
[7] P. T. T. Hoa, N. P. Duong, T. T. Loan, L. N. Anh, N. M. Hong, Gas Sensing Properties of CuFe2O4 Nanoparticles Prepared by Spray Co-Precipitation Method , Vietnam Journal of Chemistry, Vol. 57, No. 1, 2019, pp. 32-38, https//doi.org/10.1002/vjch.201960005.
[8] P. P. Hankare, S. D. Jadhav, U. B. Sankpal, R. P. Patil, R. Sasikala, I. S. Mulla, Gas Sensing Properties of Magnesium Ferrite Prepared by Co-Precipitation Method, J Alloys Compd, Vol. 488, No. 1, 2009, pp. 270-272, https//doi.org/10.1016/j.jallcom.2009.08.103.
[9] A. M. Soleimanpour, S. V. Khare, A. H. Jayatissa, Enhancement of Hydrogen Gas Sensing of Nanocrystalline Nickel Oxide by Pulsed-Laser Irradiation, ACS Appl Mater Interfaces, Vol. 4, No. 9, 2012,
pp. 4651-4657, https//doi.org/10.1021/am301024a.
[10] N. Janudin et al., Polymers (Basel), Fabrication of a Nickel Ferrite/Nanocellulose-Based Nanocomposite as an Active Sensing Material for the Detection of Chlorine Gas, Polymers (Basel), Vol. 14, No. 9, 2022, https//doi.org/10.3390/polym14091906.
[11] S. Joshi, V. B. Kamble, M. Kumar, A. M. Umarji, G. Srivastava, Nickel Substitution Induced Effects on Gas Sensing Properties of Cobalt Ferrite Nanoparticles, J Alloys Compd, Vol. 654, 2016, pp. 460-466, https//doi.org/10.1016/j.jallcom.2015.09.119.
[12] C. Mukherjee, D. Mondal, M. Sarkar, J. Das, Nanocrystalline Nickel Zinc Ferrite As an Efficient Alcohol Sensor at Room Temperature, International Journal of Environment, Agriculture and Biotechnology, Vol. 2, No. 2, 2017, pp. 799-804, https//doi.org/10.22161/ijeab/2.2.29.
[13] S. Rane, M. Shinde, S. Arbuj, S. Rane, S. Gosavi, Hydrogen and Ammonia Gas Sensing Properties of Nanostructured Cobalt Doped Tin Dioxide Based Thick Films at or Near Room Temperature, Stechnolock Arch Mater Sci, 2022, pp. 1-17.
[14] N. G. Yadav, L. S. Chaudhary, P. A. Sakhare, T. D. Dongale, P. S. Patil, A. D. Sheikh, Impact of Collected Sunlight on ZnFe2O4 Nanoparticles for Photocatalytic Application, J Colloid Interface Sci, Vol. 527, 2018, pp. 289-297, https//doi.org/10.1016/j.jcis.2018.05.051.
[15] A. Pathania, P. Thakur, A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, U. Lüders, A. Thakur, Development of Tungsten Doped Ni-Zn Nano-Ferrites with Fast Response and Recovery Time for Hydrogen Gas Sensing Application, Results Phys, Vol. 15, 2019, pp. 102531, https//doi.org/10.1016/j.rinp.2019.102531.
[16] A. Pathania, P. Thakur, A. Sharma, J. H. Hsu, A. Thakur, Investigation of Iron Deficient and Manganese Doped Ni–Mg Nano-Ferroxide Ceramics, Ceram Int, Vol. 41, No. 9, 2015, pp. 10803-10809, https//doi.org/10.1016/j.ceramint.2015.05.019.
[17] N. Iftimie, E. Rezlescu, P. D. Popa, N. Rezlescu, Gas Sensitivity of Nanocrystalline Nickel Ferrite, Journal of Optoelectronics and Advance Materials, Vol. 8, No. 3, 2006, pp. 1016-1018, https//doi.org/10.1127/TNO.2020.336.
[18] K. T. K. Hiratsuka, N. Muraishi, Gas Sensing Characteristics of Porous Nickel Ferrite Added with Rare Earth Metal Oxides, in 16th Chem. Sens. Symp, 1993, pp. 907.
[19] L. Satyanarayana, K. M. Reddy, S. V. Manorama, Nanosized Spinel NiFe2O4: A Novel Material for The Detection of Liquefied Petroleum Gas in Air, Mater Chem Phys, Vol. 82, No. 1, 2003, pp. 21-26, https//doi.org/10.1016/S0254-0584(03)00170-6.
[20] K. M. Reddy, L. Satyanarayana, S. V. Manorama, R. D. K. Misra, A Comparative Study of The Gas Sensing Behavior of Nanostructured Nickel Ferrite Synthesized by Hydrothermal and Reverse Micelle Techniques, Mater Res Bull, Vol. 39, No. 10, 2004, pp. 1491-1498, https//doi.org/10.1016/j.materresbull.2004.04.022.
[21] N. Rezlescu, N. Iftimie, E. Rezlescu, C. Doroftei, P. D. Popa, Semiconducting Gas Sensor for Acetone Based on the Fine Grained Nickel Ferrite, Sens Actuators B Chem, Vol. 114, No. 1, 2006, pp. 427-432, https//doi.org/10.1016/j.snb.2005.05.030.
[22] P. Ghosh, A. Mukherjee, M. Fu, S. Chattopadhya, P. Mitra, Influence of Particle size on H2 and H2S Sensing Characteristics of Nanocrystalline Nickel Ferrite, Physica E Low Dimens Syst Nanostruct, Vol. 74,
2015, pp. 570-575, https//doi.org/10.1016/j.physe.2015.08.023.
[23] L. N. Anh, T. T. Loan, N. K. Thanh, N. P. Duong, D. T. T. Nguyet, N. M. Hong, Structural and H2S Sensing Properties of Copper Ferrite Nanoparticles Prepared Through Hydrothermal Method, Journal of Nanoscience and Nanotechnology, Vol. 2, No. 4, 2021, pp. 2641-2646, https://doi.org/10.1166/jnn.2021.19095.
[24] L. V. Thong, L. T. N. Loan, N. V. Hieu, Comparative Study of Gas Sensor Performance of SnO2 Nanowires and Their Hierarchical Nanostructures, Sens Actuators B Chem, Vol. 150, No. 1, 2010, pp. 112-119, https//doi.org/10.1016/j.snb.2010.07.033.
[25] L. N. Anh, T. T. Loan, N. P. Duong, D. T. T. Nguyet, T. D. Hien, Single Phase Formation, Cation Distribution, and Magnetic Characterization of Coprecipitated Nickel-Zinc Ferrites, Anal Lett, Vol. 48, No. 12, 2015,
pp. 1965-1978, https//doi.org/10.1080/00032719.2014.1003430.
[26] R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallographica Section A, Vol. 32, No. 5, 1976, pp. 751-767, https//doi.org/10.1107/s0567739476001551.
[27] I. H. Kadhim, H. A. Hassan, Q. N. Abdullah, Hydrogen Gas Sensor Based on Nanocrystalline SnO2 Thin Film Grown on Bare Si Substrates, Nanomicro Lett, Vol. 8, No. 1, 2016, pp. 20-28,
https//doi.org/10.1007/s40820-015-0057-1.
[28] S. Dhall, K. Sood, R. Nathawat, Room Temperature Hydrogen Gas Sensors of Functionalized Carbon Nanotubes Based Hybrid Nanostructure: Role of Pt Sputtered Nanoparticles, Int J Hydrogen Energy, Vol. 42, No. 12, 2017, pp. 8392-8398, https//doi.org/10.1016/j.ijhydene.2017.02.005.
[29] T. Hübert, L. B. Brett, G. Black, U. Banach, Hydrogen Sensors - A Review, Sensors and Actuators, B: Chemical, Vol. 157, No. 2, 2011, pp. 329-352, https//doi.org/10.1016/j.snb.2011.04.070.
[30] N. D. Hoa, P. V. Tong, C. M. Hung, N. V. Duy, N. V. Hieu, Urea Mediated Synthesis of Ni(OH)2 Nanowires and Their Conversion Into NiO Nanostructure for Hydrogen Gas-Sensing Application, Int J Hydrogen Energy, Vol. 43, No. 19, 2018, pp. 9446-9453, https//doi.org/10.1016/j.ijhydene.2018.03.166.
[31] N. V. Duy, N. D. Hoa, N. V. Hieu, Effective Hydrogen Gas Nanosensor Based on Bead-Like Nanowires of Platinum-Decorated Tin Oxide, Sens Actuators B Chem, Vol. 173, 2012, pp. 211-217,
https//doi.org/ 10.1016/j.snb.2012.06.079.
[32] G. P. Joshi, N. S. Saxena, R. Mangal, A. Mishra, T. P. Sharma, Band Gap Determination of Ni-Zn Ferrites, Bulletin of Materials Science, Vol. 26, 2003, pp. 387-389, https//doi.org/10.1007/BF02711181.