Bui Thi Hang

Main Article Content

Abstract

Fe2O3 nanopowder was synthesized by sol-gel method from the iron source material Fe(NO3)3.9H2O and citric acid C6H8O7.H2O without any refined process. The structure and particles size of the synthesized materials were determined by X-ray diffraction and scanning electron microscopy. The obtained product is α-Fe2O3 with different shapes and sizes depending on the preparation conditions. α-Fe2O3 was applied as anode of iron-air battery. The cyclic voltammetry measurements showed that the size and morphology of Fe2O3 particles affect the electrochemical characteristics of the electrodes. Using K2S as an electrolyte additive improved the electrochemical properties of mixing of Fe2O3 and carbon acetylene black (Fe2O3/AB) electrodes as evidenced by increased redox reaction rate of iron, increased capacity of Fe2O3/AB electrode and reduced
H2 evolution.


 

Keywords: Fe2O3 nanopowders, Fe2O3 nanoparticles, sol-gel, Fe2O3/AB electrode, energy storage.

References

[1] A. Ito, L. Zhao, S. Okada, J. Yamaki, Synthesis of Nano-Fe3O4-loaded Tubular Carbon Nanofibers and Their Application as Negative Electrodes for Fe/air Batteries, J. Power Sources, Vol. 196, No. 19, 2011, pp. 8154-8159, https://doi.org/10.1016/j.jpowsour.2011.05.043.
[2] A. Inoishi, T. Sakai, Y.W. Ju, S. Ida, T. Ishihara, Improved Cycle Stability of Fe–Air Solid State Oxide Rechargeable Battery Using Lagao3-Based Oxide Ion Conductor, J. Power Sources, Vol. 262, 2014, pp. 310-315, https://doi.org/10.1016/j.jpowsour.2014.03.125.
[3] A. K. Manohar, C. Yang, S. R. Narayanan, The Role of Sulfide Additives in Achieving Long Cycle Life Rechargeable Iron Electrodes in Alkaline Batteries, J. Electrochem. Soc., Vol. 162, No. 9, 2015, pp. A1864-A1872, https://doi.org/10.1149/2.0741509jes.
[4] H. A. F. Rodríguez, R. D. M. Kerracher, C. P. D. Leόn, F. C. Walsh, Improvement of Negative Electrodes for Iron-Air Batteries: Comparison of Different Iron Compounds as Active Materials, J. Electrochem. Soc., Vol. 166, No. 2, 2019, pp. A107-A117, https://doi.org/10.1149/2.1071816jes.
[5] H. A. F. Rodríguez, R. D. M. Kerracher, M. Insausti, A. G. Luis, C. P. D. Leόn, C. Alegre, V. Baglio, A. S. Aricò, F. C. Walsh, A Rechargeable, Aqueous Iron Air Battery with Nanostructured Electrodes Capable of High Energy Density Operation, J. Electrochem. Soc, Vol. 164, No. 6, 2017, pp. A1148-A1157, https://doi.org/10.1149/2.0711706jes.
[6] A. S. Rajan, S. Sampath, A. K. Shukla, An in Situ Carbon-grafted Alkaline Iron Electrode for Iron-Based accumulators, Energy Environ. Sci., Vol. 7, No. 3, 2014, pp. 1110-1116, https://doi.org/10.1039/c3ee42783h.
[7] J. O. Gil Posada, P. J. Hall, Post-hoc Comparisons Among Iron Electrode Formulations Based on Bismuth, Bismuth Sulphide, Iron Sulphide, and Potassium Sulphide Under Strong Alkaline Conditions, J. Power Sources, Vol. 268, 2014, pp. 810-815, https://doi.org/10.1016/j.jpowsour.2014.06.126.
[8] X. Zhang, X. G. Wang, Z. Xie, Z. Zhou, Recent Progress in Rechargeable Alkali Metal–air Batteries, Green Energy Environ, Vol. 1, No. 1, 2016, pp. 4-17, https://doi.org/10.1016/j.gee.2016.04.004.
[9] Q. Fang, C. M. Berger, N. H. Menzler, M. Bram, L. Blum, Electrochemical Characterization of Fe-air Rechargeable Oxide Battery in Planar Solid Oxide Cell Stacks, J. Power Sources, Vol. 336, 2016, pp. 91-98, https://doi.org/10.1016/j.jpowsour.2016.10.059.
[10] K. Hayashi, Y. Wada, Y. Maeda, T. Suzuki, H. Sakamoto, W. K. Tan, G. Kawamura, H. Muto, A. Matsuda, Electrochemical Performance of Sintered Porous Negative Electrodes Fabricated with Atomized Powders for Iron-Based Alkaline Rechargeable Batteries, J. Electrochem. Soc, Vol. 164, No. 9, 2017, pp. A2049-A2055, https://doi.org/10.1149/2.1311709jes.
[11] T. S. Balasubramanian, A. K. Shukla, Effect of Metal-sulfide Additives on Charge/Discharge Reactions of the Alkaline Iron Electrode, J. Power Sources, Vol. 41, No. 1-2, 1993, pp. 99-105, https://doi.org/10.1016/0378-7753(93)85008-C.
[12] J. O. G. Posada, P. J. Hall, Controlling Hydrogen Evolution on Iron Electrodes, Int. J. Hydrogen Energy., Vol. 41, No. 45, 2016, pp 20807-20817, https://doi.org/10.1016/j.ijhydene.2016.04.123.
[13] C. A. C. Souza, I. A. Carlos, M. Lopes, G. A. Finazzi, M. R. H. D. Almeida, Self-discharge of Fe-Ni alkaline Batteries, J. Power Sources, Vol. 132, No. 1-2, 2004, pp. 288-290, https://doi.org/10.1016/j.jpowsour.2003.12.043.
[14] C. Yang, A. K. Manohar, S. R. Narayanan, A High-Performance Sintered Iron Electrode for Rechargeable Alkaline Batteries to Enable Large-Scale Energy Storage, J. Electrochem. Soc., Vol. 164, No. 2, 2017, pp. A418-A429, https://doi.org/10.1149/2.1161702jes.
[15] M. K. Ravikumar, A. S. Rajan, S. Sampath, K. R. Priolkar, A. K. Shukla, In Situ Crystallographic Probing on Ameliorating Effect of Sulfide Additives and Carbon Grafting in Iron Electrodes, J. Electrochem. Soc., Vol. 162, No. 12, 2015, pp. A2339-A2350, https://doi.org/10.1149/2.0721512jes.
[16] B. T. Hang, S. H. Yoon, S. Okada, J. Yamaki, Effect of Metal-Sulfide Additives on Electrochemical Properties of Nano-sized Fe2O3-loaded Carbon for Fe/Air Battery Anodes, J. Power Sources, Vol. 168, No. 2, 2007,
pp. 522-532, https://doi.org/10.1016/j.jpowsour.2007.02.067.
[17] A. Sundar Rajan, M. K. Ravikumar, K. R. Priolkar, S. Sampath, A. K. Shukla, Carbonyl-Iron Electrodes for Rechargeable-Iron, Electrochem. Energy Technol., Vol. 1, 2014, pp. 2-9,
https://doi.org/10.1515/eetech-2014-0002.
[18] D. Mitra, A. S. Rajan, A. Irshad, S. R. Narayanan, High Performance Iron Electrodes with Metal Sulfide Additives, J. Electrochem. Soc., Vol. 168, No. 3, 2021, pp. 030518, https://doi.org/10.1149/1945-7111/abe9c7.
[19] M. M. B. Abbad, M. S. Takriff, A. Benamor, A. W. Mohammad, Size and Shape Controlled of α-Fe2O3 Nanoparticles Prepared Via Sol–gel Technique and Their Photocatalytic Activity, J. Sol-Gel Sci. Technol., Vol. 81, No. 3, 2017, pp. 880-893, https://doi.org/10.1007/s10971-016-4228-4.
[20] C. Chakkaravarthy, P. Periasamy, S. Jegannathan, K. I. Vasu, The Nickel/Iron Battery, J. Power Sources, Vol. 35, No. 1, 1991, pp. 21-35, https://doi.org/10.1016/0378-7753(91)80002-F.
[21] K. Micka, Z. Zábranský, Study of Iron Oxide Electrodes in an Alkaline Electrolyte, J. Power Sources,
Vol. 19, No. 4, 1987, pp. 315-323, https://doi.org/10.1016/0378-7753(87)87007-6.
[22] L. Öjefors, SEM Studies of Discharge Products from Alkaline Iron Electrodes, J. Electrochem. Soc.,
Vol. 123, No. 11, 1976, pp. 1691-1696, https://doi.org/10.1149/1.2132669.
[23] M. C. Wu, T. S. Zhao, P. Tan, H. R. Jiang, X. B. Zhu, Cost-effective carbon Supported Fe2O3 Nanoparticles as an Efficient Catalyst for Non-Aqueous Lithium-Oxygen Batteries, Electrochim. Acta., Vol. 211, 2016,
pp. 545-551, https://doi.org/10.1016/j.electacta.2016.05.147.