Numerical Investigation of Optical Properties in Carbon Tetrachloride-Filled Photonic Crystal Fibers
Main Article Content
Abstract
In this work, we design circular lattice photonic crystal fibers using Lumerical Mode Solution software, its hollow core filled with carbon tetrachloride. Optical properties including effective refractive index, chromatic dispersion, nonlinearity, and fiber loss were investigated numerically in detail based on solving Maxwell's wave equations. The small effective mode areas of only a few µm2, and confinement loss as low as 14.799 dB/m at specific pump wavelengths were obtained. It was found that near-zero ultra-flattened chromatic dispersion with fluctuations of ±0.44 ps/nm.km spans from 1300 to 1830 nm. Three photonic crystal fibers with optimal structure and features were suggested for broadband supercontinuum generation orientation.
Keywords:
Photonic crystal fibers, carbon tetrachloride, ultra-flattened dispersion, small effective area, low confinement loss.
References
[1] T. N. Thi, D. H. Trong, B. T. L. Tran, T. D. Van, L. C. Van, Optimization of Optical Properties of Toluene-Core Photonic Crystal Fibers with Circle Lattice for Supercontinuum Generation, Journal of Optics, Vol. 51, 2022,
pp. 678-688, https://doi.org/10.1007/s12596-021-00802-y.
[2] T. N. Thi, D. H. Trong, L. C. Van, Supercontinuum Generation in Ultra-Flattened Near-zero Dispersion PCF with C7H8 Infiltration, Optical and Quantum Electronics, Vol. 55, 2023, pp. 93, https://doi.org/10.1007/s11082-022-04351-x.
[3] V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, R. Buczynski, All-Normal Dispersion Supercontinuum Generation in Photonic Crystal Fibers with Large Hollow Cores Infiltrated with Toluene, Optical Materials Express, Vol. 8, No. 11, 2018,
pp. 3568-3582, https://doi.org/10.1364/OME.8.003568.
[4] L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach,
R. Buczyński, Supercontinuum Generation in Photonic Crystal Fibres with Core Filled with Toluene, Journal of Optics, Vol. 19, No. 12, 2017, pp. 125604, https://doi.org/10.1088/2040-8986/aa96bc.
[5] L. C. Van, V. T. Hoang, V. Cao Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Chloroform for Supercontinuum Generation, Laser Physics, Vol. 29, No. 7, 2019, pp. 075107–9, https://doi.org/10.1088/1555-6611/ab2115.
[6] H. Zhang, S. Chang, J. Yuan, D. Huang, Supercontinuum Generation in Chloroform-Filled Photonic Crystal Fibers, Optik, Vol. 121, No. 9, 2010, pp. 783-787, https://doi.org/10.1016/j.ijleo.2008.09.026.
[7] C. C. Wang, W. M. Li, N. Li, W. Q. Wang, Numerical Simulation of Coherent Visible-To-Near-Infrared Supercontinuum Generation in the CHCl3-Filled Photonic Crystal Fiber with 1.06 μm Pump Pulses, Optics & Laser Technology, Vol. 88, 2017, pp. 215-221, https://doi.org/10.1016/j.optlastec.2016.09.020.
[8] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Benzene-Filled Hollow-Core Fibers, Optical Engineering, Vol. 60,
No. 11, 2021, pp. 116109, http://doi.org/10.1117/1.OE.60.11.116109.
[9] L. C. Van, B. T. L. Tran, T. N. Thi, D. H. Trong, T. D. Van, T. D. Mai, H. T. Ngoc, T. T. Doan, K. D. Quoc, Comparison of Supercontinuum Generation Spectral Intensity in Benzene-Core PCFs with Diferent Types of Lattices in the Claddings, Optical and Quantum Electronics, Vol. 54, 2022, pp. 840, https://doi.org/10.1007/s11082-022-04218-1.
[10] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Nitrobenzene, Laser Physics, Vol. 30, No. 3, 2020, pp. 035105, https://doi.org/10.1088/1555-6611/ab6f09.
[11] R. Zhang, J. Teipel, H. Giessen, Theoretical Design of A Liquid-Core Photonic Crystal Fiber for Supercontinuum Generation, Optics Express, Vol. 14, Iss. 15, 2006, pp. 6800-6812, https://doi.org/10.1364/OE.14.006800.
[12] L. C. Van, T. N. Thi, D. H. Trong, B. T. L. Tran, N. V. T. Minh, T. D. Van, T. L. Canh, Q. H. Dinh, K. D. Quoc, Comparison of Supercontinuum Spectrum Generating by Hollow Core PCFs Filled with Nitrobenzene with Different Lattice Types, Optical and Quantum Electronics, Vol. 54, 2022, pp. 300, https://doi.org/10.1007/s11082-022-03667-y.
[13] J. Wen, B. Liang, W. Qin, W. Sun, C. He, K. Xiong, High Coherent Supercontinuum Generation in Nitrobenzene Liquid-Core Photonic Crystal Fiber with Elliptical Air-Hole Inner Ring, Optical and Quantum Electronics,
Vol. 54, 2022, pp. 817, https://doi.org/10.1007/s11082-022-04234-1.
[14] Y. Guo, J. Yuan, K. Wang, H. Wang, Y. Cheng, X. Zhou, B. Yan, X. Sang, C. Yu, Generation of Supercontinuum and Frequency Comb in a Nitrobenzene-Core Photonic Crystal Fiber with All-Normal Dispersion Profile, Optics Communications, Vol. 481, 2021, pp. 126555, https://doi.org/10.1016/j.optcom.2020.126555.
[15] L. C. Van, B. T. L. Tran, T. D. Van, N. V. T. Minh, T. N. Thi, H. P. N. Thi, M. H. T. Nguyen, V. T. Hoang, Supercontinuum Generation in Highly Birefringent Fiber Infiltrated with Carbon Disulfide, Optical Fiber Technology, Vol. 75, 2023, pp. 103151, https://doi.org/10.1016/j.yofte.2022.103151.
[16] H. V. Le, V. T. Hoang, H. T. Nguyen, V. C. Long, R. Buczynski, R. Kasztelanic, Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Tetrachloroethylene, Optical and Quantum Electronics, Vol. 53, 2021,
pp. 187, https://doi.org/10.1007/s11082-021-02820-3.
[17] J. M. Dudley, G. Genty, S. Coen, Supercontinuum Generation in Photonic Crystal Fiber, Reviews of Modern Physics, Vol. 78, No. 4, 2006, pp. 1135-1184, https://doi.org/10.1103/RevModPhys.78.1135.
[18] Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak,
R. Buczyński, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Carbon Tetrachloride for Supercontinuum Generation with Subnanojoule Femtosecond Pulses, Applied Optics, Vol. 57, No. 14, 2018, pp. 3738-3746, https://doi.org/10.1364/AO.57.003738.
[19] T. N. Thi, D. H. Trong, B. T. L. Tran, L. C. Van, Flat-Top and Broadband Supercontinuum Generation in CCl4-Filled Circular Photonic Crystal Fiber, Journal of Nonlinear Optical Physics & Materials, 2022, https://doi.org/10.1142/S021886352350042X.
[20] T. N. Thi, D. H. Trong, L. C. Van, Comparison of Supercontinuum Spectral Widths in CCl4-Core PCF with Square and Circular Lattices in the Claddings, Laser Physics, Vol. 33, No. 5, 2023, pp. 055102–13, https://doi.org/10.1088/1555-6611/acc240.
[21] H. V. Le, V. T. Hoang, G. Stępniewski, T. L. Canh, N. V. T. Minh, R. Kasztelanic, M. Klimczak, J. Pniewski,
K. X. Dinh, A. M. Heidt, R. Buczyński, Low Pump Power Coherent Supercontinuum Generation in Heavy Metal Oxide Solid-Core Photonic Crystal Fibers Infiltrated with Carbon Tetrachloride Covering 930–2500 nm, Optics Express, Vol. 29, No. 24, 2021, pp. 39586-39600, https://doi.org/10.1364/OE.443666.
[22] V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long,
T. R. Woliński, M. Trippenbach, K. D. Xuan., M. Śmietana, R. Buczyński, Supercontinuum Generation in an All-Normal Dispersion Large Core Photonic Crystal Fiber Infiltrated with Carbon Tetrachloride. Optical Materials Express, Vol. 9, No, 5, 2019, pp. 2264-2278, https://doi.org/10.1364/OME.9.002264.
[23] V. T. Hoang, R. Kasztelanic, G. Stępniewski, K. D. Xuan, V. C. Long, M. Trippenbach, M. Klimczak,
R. Buczyński, J. Pniewski, Femtosecond Supercontinuum Generation Around 1560 nm in Hollow-Core Photonic Crystal Fibers Filled with Carbon Tetrachloride, Applied Optics, Vol. 59, No. 12, 2020, pp. 3720-3725, https://doi.org/10.1364/AO.385003.
[24] B. T. L. Tran, L. C. Van, A New Type of Supercontinuum Generation in Hexagonal Lattice C6H6-Core PCF with Broadband and Low-Power Pump, International Journal of Modern Physics B, 2023, https://doi.org/10.1142/S0217979224503533.
[25] J. Challenor, Toxicology of Solvents, Rapra Technology Ltd, United Kingdom, 2002, ISBN: 1-85957-296-0, https://doi/10.1093/occmed/52.6.363-a.
[26] M. Vieweg, S. Pricking, T. Gissibl, Y. Kartashov, L. Torner, H. Giessen, Tunable Ultrafast Nonlinear Optofluidiccoupler, Optics Letters, Vol. 37, No. 6, 2012, pp. 1058-1060, https://doi.org/10.1364/OL.37.001058.
[27] J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, P. Hering, First Clinical Application of A Liquid-Corelight Guide Connected to an Er: YAG Laser for Oral Treatment of Leukoplakia, Laser in Medical Science, Vol. 25, No. 5, 2010, pp. 669–673, https://doi.org/10.1007/s10103-010-0782-0.
[28] C. Z. Tan, Determination of Refractive Index of Silica Glass for Infrared Wavelengths by IR Spectroscopy, Journal of Non-Crystalline Solids, Vol. 223, No. (1-2), 1998, pp. 158-163, https://doi.org/10.1016/s0022-3093(97)00438-9.
[29] K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Refractive, Dispersive and Thermo-Optic Properties of Twelve Organic Solvents in the Visible and Near-Infrared, Applied Physics B,
Vol. 116, No. 3, 2013, pp. 617-622, https://doi.org/10.1007/s00340-013-5744-3.
[30] K. Saitoh, N. J. Florous, M. Koshiba, Theoretical Realization of Holey Fiber with Flat Chromatic Dispersion and Large Mode Area: An Intriguing Defected Approach, Optics Letters, Vol. 31, No. 1, 2006, pp. 26-28, https://doi.org/10.1364/OL.31.000026.
[31] G. Stępniewski, J. Pniewski, D. Pysz, J. Cimek, R. Stępień, M. Klimczak, R. Buczyński, Development of Dispersion-Optimized Photonic Crystal Fibers Based on Heavy Metal Oxide Glasses for Broadband Infrared Supercontinuum Generation with Fiber Lasers, Sensors, Vol. 18, No. 12, 2018, pp. 4127, https://doi.org/10.3390/s18124127.
[32] Z. Zhu, T. G. Brown, Full-Vectorial Finite-Difference Analysis of Microstructured Optical Fibers, Optical Materials Express, Vol. 10, No. 7, 2002, pp. 853-864, https://doi.org/10.1364/OE.10.000853.
[33] S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Linear Refractive Index and Absorption Measurements of Nonlinear Optical Liquids in The Visible and Near-Infrared Spectral Region, Optical Materials. Express, Vol. 2, No. 11, 2012, pp.1588-1611, https://doi.org/10.1364/OME.2.001588.
[34] R. K. Sinha, A. D. Varshney, Dispersion Properties of Photonic Crystal Fiber: Comparison by Scalar and Fully Vectorial Effective Index Methods, Optical and Quantum Electronics, Vol. 37, No. 8, pp. 711-722, 2005, https://doi.org/10.1007/s11082-005-3196-7.
[35] A. Medjouri, L. M. Simohamed, O. Ziane, A. Boudrioua, Z. Becer, Design of a Circular Photonic Crystal Fiber with Flattened Chromatic Dispersion using a Defected Core and Selectively Reduced Air Holes: Application to Supercontinuum Generation at 1.55 μm, Photonics and Nanostructures - Fundamentals and Applications, Vol. 16, 2015, pp. 43-50, https://doi.org/10.1016/j.photonics.2015.08.004.
[36] A. Medjouri, E. B. Meraghni, H. Hathroubi, D. Abed, L. M. Simohamed, O. Ziane, Design of ZBLAN Photonic Crystal Fiber with Nearly Zero Ultra-Flattened Chromatic Dispersion for Supercontinuum Generation, Optik,
Vol. 135, 2017, pp. 417-425, https://doi.org/10.1016/j.ijleo.2017.01.082.
[37] H. V. Le, V. L. Cao, H. T. Nguyen, A. M. Nguyen, R. Buczyński, R. Kasztelanic, Application of Ethanol Infiltration for Ultra-Flattened Normal Dispersion in Fused Silica Photonic Crystal Fibers, Laser Physics,
Vol. 28, 2018, pp. 115106, https://doi.org/10.1088/1555-6611/aad93a.
[38] Y. Huang, H. Yang, S. Zhao, Y. Mao, S. Chen, Design of Photonic Crystal Fibers with Flat Dispersion and Three Zero Dispersion Wavelengths for Coherent Supercontinuum Generation in Both Normal and Anomalous Regions, Results in Physics, Vol. 23, 2021, pp. 104033, https://doi.org/10.1016/j.rinp.2021.104033.
[39] P. Kumar, K. F. Fiaboe, J. S. Roy, Design of Nonlinear Photonic Crystal Fibers with Ultra-Flattened Zero Dispersion for Supercontinuum Generation, ETRI Journal, Vol. 42, No. 2, 2020, pp. 282-291, https://doi.org/10.4218/etrij.2019-0024.
[40] T. Huang, Q. Wei, Z. Wu, X. Wu, P. Huang, Z. Cheng, P. P. Shum, Ultra-Flattened Normal Dispersion Fiber for Supercontinuum and Dissipative Soliton Resonance Generation at 2 μm, IEEE Photonics Journal, Vol. 11, No. 3, 2019, pp. 7101511, https://doi.org/10.1109/JPHOT.2019.2915265.
[41] P. S. Maji, P. R. Chaudhuri, Supercontinuum Generation in Ultra-Flat Near Zero Dispersion PCF with Selective Liquid Infiltration, Optik, Vol. 125, No. 20, 2014, pp. 5986-5992, https://doi.org/10.1016/j.ijleo.2014.07.026.
[42] A. Ghanbari, A. Kashaninia, A. Sadr, H. Saghaei, Supercontinuum Generation for Optical Coherence Tomography using Magnesium Fluoride Photonic Crystal Fiber, Vol. 140, 2017, pp. 545-554, https://doi.org/10.1016/j.ijleo.2017.04.099.
[43] G. P. Agrawal, Nonlinear Fiber Optics (5th Edition), Elsevier, Amsterdam, ISBN: 978-0-12-397023-7, 2013, https://doi.org/10.1016/C2011-0-00045-5.
pp. 678-688, https://doi.org/10.1007/s12596-021-00802-y.
[2] T. N. Thi, D. H. Trong, L. C. Van, Supercontinuum Generation in Ultra-Flattened Near-zero Dispersion PCF with C7H8 Infiltration, Optical and Quantum Electronics, Vol. 55, 2023, pp. 93, https://doi.org/10.1007/s11082-022-04351-x.
[3] V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, R. Buczynski, All-Normal Dispersion Supercontinuum Generation in Photonic Crystal Fibers with Large Hollow Cores Infiltrated with Toluene, Optical Materials Express, Vol. 8, No. 11, 2018,
pp. 3568-3582, https://doi.org/10.1364/OME.8.003568.
[4] L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach,
R. Buczyński, Supercontinuum Generation in Photonic Crystal Fibres with Core Filled with Toluene, Journal of Optics, Vol. 19, No. 12, 2017, pp. 125604, https://doi.org/10.1088/2040-8986/aa96bc.
[5] L. C. Van, V. T. Hoang, V. Cao Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Chloroform for Supercontinuum Generation, Laser Physics, Vol. 29, No. 7, 2019, pp. 075107–9, https://doi.org/10.1088/1555-6611/ab2115.
[6] H. Zhang, S. Chang, J. Yuan, D. Huang, Supercontinuum Generation in Chloroform-Filled Photonic Crystal Fibers, Optik, Vol. 121, No. 9, 2010, pp. 783-787, https://doi.org/10.1016/j.ijleo.2008.09.026.
[7] C. C. Wang, W. M. Li, N. Li, W. Q. Wang, Numerical Simulation of Coherent Visible-To-Near-Infrared Supercontinuum Generation in the CHCl3-Filled Photonic Crystal Fiber with 1.06 μm Pump Pulses, Optics & Laser Technology, Vol. 88, 2017, pp. 215-221, https://doi.org/10.1016/j.optlastec.2016.09.020.
[8] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Benzene-Filled Hollow-Core Fibers, Optical Engineering, Vol. 60,
No. 11, 2021, pp. 116109, http://doi.org/10.1117/1.OE.60.11.116109.
[9] L. C. Van, B. T. L. Tran, T. N. Thi, D. H. Trong, T. D. Van, T. D. Mai, H. T. Ngoc, T. T. Doan, K. D. Quoc, Comparison of Supercontinuum Generation Spectral Intensity in Benzene-Core PCFs with Diferent Types of Lattices in the Claddings, Optical and Quantum Electronics, Vol. 54, 2022, pp. 840, https://doi.org/10.1007/s11082-022-04218-1.
[10] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Nitrobenzene, Laser Physics, Vol. 30, No. 3, 2020, pp. 035105, https://doi.org/10.1088/1555-6611/ab6f09.
[11] R. Zhang, J. Teipel, H. Giessen, Theoretical Design of A Liquid-Core Photonic Crystal Fiber for Supercontinuum Generation, Optics Express, Vol. 14, Iss. 15, 2006, pp. 6800-6812, https://doi.org/10.1364/OE.14.006800.
[12] L. C. Van, T. N. Thi, D. H. Trong, B. T. L. Tran, N. V. T. Minh, T. D. Van, T. L. Canh, Q. H. Dinh, K. D. Quoc, Comparison of Supercontinuum Spectrum Generating by Hollow Core PCFs Filled with Nitrobenzene with Different Lattice Types, Optical and Quantum Electronics, Vol. 54, 2022, pp. 300, https://doi.org/10.1007/s11082-022-03667-y.
[13] J. Wen, B. Liang, W. Qin, W. Sun, C. He, K. Xiong, High Coherent Supercontinuum Generation in Nitrobenzene Liquid-Core Photonic Crystal Fiber with Elliptical Air-Hole Inner Ring, Optical and Quantum Electronics,
Vol. 54, 2022, pp. 817, https://doi.org/10.1007/s11082-022-04234-1.
[14] Y. Guo, J. Yuan, K. Wang, H. Wang, Y. Cheng, X. Zhou, B. Yan, X. Sang, C. Yu, Generation of Supercontinuum and Frequency Comb in a Nitrobenzene-Core Photonic Crystal Fiber with All-Normal Dispersion Profile, Optics Communications, Vol. 481, 2021, pp. 126555, https://doi.org/10.1016/j.optcom.2020.126555.
[15] L. C. Van, B. T. L. Tran, T. D. Van, N. V. T. Minh, T. N. Thi, H. P. N. Thi, M. H. T. Nguyen, V. T. Hoang, Supercontinuum Generation in Highly Birefringent Fiber Infiltrated with Carbon Disulfide, Optical Fiber Technology, Vol. 75, 2023, pp. 103151, https://doi.org/10.1016/j.yofte.2022.103151.
[16] H. V. Le, V. T. Hoang, H. T. Nguyen, V. C. Long, R. Buczynski, R. Kasztelanic, Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Tetrachloroethylene, Optical and Quantum Electronics, Vol. 53, 2021,
pp. 187, https://doi.org/10.1007/s11082-021-02820-3.
[17] J. M. Dudley, G. Genty, S. Coen, Supercontinuum Generation in Photonic Crystal Fiber, Reviews of Modern Physics, Vol. 78, No. 4, 2006, pp. 1135-1184, https://doi.org/10.1103/RevModPhys.78.1135.
[18] Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak,
R. Buczyński, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Carbon Tetrachloride for Supercontinuum Generation with Subnanojoule Femtosecond Pulses, Applied Optics, Vol. 57, No. 14, 2018, pp. 3738-3746, https://doi.org/10.1364/AO.57.003738.
[19] T. N. Thi, D. H. Trong, B. T. L. Tran, L. C. Van, Flat-Top and Broadband Supercontinuum Generation in CCl4-Filled Circular Photonic Crystal Fiber, Journal of Nonlinear Optical Physics & Materials, 2022, https://doi.org/10.1142/S021886352350042X.
[20] T. N. Thi, D. H. Trong, L. C. Van, Comparison of Supercontinuum Spectral Widths in CCl4-Core PCF with Square and Circular Lattices in the Claddings, Laser Physics, Vol. 33, No. 5, 2023, pp. 055102–13, https://doi.org/10.1088/1555-6611/acc240.
[21] H. V. Le, V. T. Hoang, G. Stępniewski, T. L. Canh, N. V. T. Minh, R. Kasztelanic, M. Klimczak, J. Pniewski,
K. X. Dinh, A. M. Heidt, R. Buczyński, Low Pump Power Coherent Supercontinuum Generation in Heavy Metal Oxide Solid-Core Photonic Crystal Fibers Infiltrated with Carbon Tetrachloride Covering 930–2500 nm, Optics Express, Vol. 29, No. 24, 2021, pp. 39586-39600, https://doi.org/10.1364/OE.443666.
[22] V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long,
T. R. Woliński, M. Trippenbach, K. D. Xuan., M. Śmietana, R. Buczyński, Supercontinuum Generation in an All-Normal Dispersion Large Core Photonic Crystal Fiber Infiltrated with Carbon Tetrachloride. Optical Materials Express, Vol. 9, No, 5, 2019, pp. 2264-2278, https://doi.org/10.1364/OME.9.002264.
[23] V. T. Hoang, R. Kasztelanic, G. Stępniewski, K. D. Xuan, V. C. Long, M. Trippenbach, M. Klimczak,
R. Buczyński, J. Pniewski, Femtosecond Supercontinuum Generation Around 1560 nm in Hollow-Core Photonic Crystal Fibers Filled with Carbon Tetrachloride, Applied Optics, Vol. 59, No. 12, 2020, pp. 3720-3725, https://doi.org/10.1364/AO.385003.
[24] B. T. L. Tran, L. C. Van, A New Type of Supercontinuum Generation in Hexagonal Lattice C6H6-Core PCF with Broadband and Low-Power Pump, International Journal of Modern Physics B, 2023, https://doi.org/10.1142/S0217979224503533.
[25] J. Challenor, Toxicology of Solvents, Rapra Technology Ltd, United Kingdom, 2002, ISBN: 1-85957-296-0, https://doi/10.1093/occmed/52.6.363-a.
[26] M. Vieweg, S. Pricking, T. Gissibl, Y. Kartashov, L. Torner, H. Giessen, Tunable Ultrafast Nonlinear Optofluidiccoupler, Optics Letters, Vol. 37, No. 6, 2012, pp. 1058-1060, https://doi.org/10.1364/OL.37.001058.
[27] J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, P. Hering, First Clinical Application of A Liquid-Corelight Guide Connected to an Er: YAG Laser for Oral Treatment of Leukoplakia, Laser in Medical Science, Vol. 25, No. 5, 2010, pp. 669–673, https://doi.org/10.1007/s10103-010-0782-0.
[28] C. Z. Tan, Determination of Refractive Index of Silica Glass for Infrared Wavelengths by IR Spectroscopy, Journal of Non-Crystalline Solids, Vol. 223, No. (1-2), 1998, pp. 158-163, https://doi.org/10.1016/s0022-3093(97)00438-9.
[29] K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Refractive, Dispersive and Thermo-Optic Properties of Twelve Organic Solvents in the Visible and Near-Infrared, Applied Physics B,
Vol. 116, No. 3, 2013, pp. 617-622, https://doi.org/10.1007/s00340-013-5744-3.
[30] K. Saitoh, N. J. Florous, M. Koshiba, Theoretical Realization of Holey Fiber with Flat Chromatic Dispersion and Large Mode Area: An Intriguing Defected Approach, Optics Letters, Vol. 31, No. 1, 2006, pp. 26-28, https://doi.org/10.1364/OL.31.000026.
[31] G. Stępniewski, J. Pniewski, D. Pysz, J. Cimek, R. Stępień, M. Klimczak, R. Buczyński, Development of Dispersion-Optimized Photonic Crystal Fibers Based on Heavy Metal Oxide Glasses for Broadband Infrared Supercontinuum Generation with Fiber Lasers, Sensors, Vol. 18, No. 12, 2018, pp. 4127, https://doi.org/10.3390/s18124127.
[32] Z. Zhu, T. G. Brown, Full-Vectorial Finite-Difference Analysis of Microstructured Optical Fibers, Optical Materials Express, Vol. 10, No. 7, 2002, pp. 853-864, https://doi.org/10.1364/OE.10.000853.
[33] S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Linear Refractive Index and Absorption Measurements of Nonlinear Optical Liquids in The Visible and Near-Infrared Spectral Region, Optical Materials. Express, Vol. 2, No. 11, 2012, pp.1588-1611, https://doi.org/10.1364/OME.2.001588.
[34] R. K. Sinha, A. D. Varshney, Dispersion Properties of Photonic Crystal Fiber: Comparison by Scalar and Fully Vectorial Effective Index Methods, Optical and Quantum Electronics, Vol. 37, No. 8, pp. 711-722, 2005, https://doi.org/10.1007/s11082-005-3196-7.
[35] A. Medjouri, L. M. Simohamed, O. Ziane, A. Boudrioua, Z. Becer, Design of a Circular Photonic Crystal Fiber with Flattened Chromatic Dispersion using a Defected Core and Selectively Reduced Air Holes: Application to Supercontinuum Generation at 1.55 μm, Photonics and Nanostructures - Fundamentals and Applications, Vol. 16, 2015, pp. 43-50, https://doi.org/10.1016/j.photonics.2015.08.004.
[36] A. Medjouri, E. B. Meraghni, H. Hathroubi, D. Abed, L. M. Simohamed, O. Ziane, Design of ZBLAN Photonic Crystal Fiber with Nearly Zero Ultra-Flattened Chromatic Dispersion for Supercontinuum Generation, Optik,
Vol. 135, 2017, pp. 417-425, https://doi.org/10.1016/j.ijleo.2017.01.082.
[37] H. V. Le, V. L. Cao, H. T. Nguyen, A. M. Nguyen, R. Buczyński, R. Kasztelanic, Application of Ethanol Infiltration for Ultra-Flattened Normal Dispersion in Fused Silica Photonic Crystal Fibers, Laser Physics,
Vol. 28, 2018, pp. 115106, https://doi.org/10.1088/1555-6611/aad93a.
[38] Y. Huang, H. Yang, S. Zhao, Y. Mao, S. Chen, Design of Photonic Crystal Fibers with Flat Dispersion and Three Zero Dispersion Wavelengths for Coherent Supercontinuum Generation in Both Normal and Anomalous Regions, Results in Physics, Vol. 23, 2021, pp. 104033, https://doi.org/10.1016/j.rinp.2021.104033.
[39] P. Kumar, K. F. Fiaboe, J. S. Roy, Design of Nonlinear Photonic Crystal Fibers with Ultra-Flattened Zero Dispersion for Supercontinuum Generation, ETRI Journal, Vol. 42, No. 2, 2020, pp. 282-291, https://doi.org/10.4218/etrij.2019-0024.
[40] T. Huang, Q. Wei, Z. Wu, X. Wu, P. Huang, Z. Cheng, P. P. Shum, Ultra-Flattened Normal Dispersion Fiber for Supercontinuum and Dissipative Soliton Resonance Generation at 2 μm, IEEE Photonics Journal, Vol. 11, No. 3, 2019, pp. 7101511, https://doi.org/10.1109/JPHOT.2019.2915265.
[41] P. S. Maji, P. R. Chaudhuri, Supercontinuum Generation in Ultra-Flat Near Zero Dispersion PCF with Selective Liquid Infiltration, Optik, Vol. 125, No. 20, 2014, pp. 5986-5992, https://doi.org/10.1016/j.ijleo.2014.07.026.
[42] A. Ghanbari, A. Kashaninia, A. Sadr, H. Saghaei, Supercontinuum Generation for Optical Coherence Tomography using Magnesium Fluoride Photonic Crystal Fiber, Vol. 140, 2017, pp. 545-554, https://doi.org/10.1016/j.ijleo.2017.04.099.
[43] G. P. Agrawal, Nonlinear Fiber Optics (5th Edition), Elsevier, Amsterdam, ISBN: 978-0-12-397023-7, 2013, https://doi.org/10.1016/C2011-0-00045-5.