Study on the Palladium Nucleation and Growth Mechanism in A Deep Eutectic Solvent by Electrochemical Method
Main Article Content
Abstract
By using cyclic voltammetry (CV) and chronoamperometry (CA) techniques, the thermodynamics and kinetics of palladium electrodeposition on glassy carbon electrode (GCE) in deep eutectic solvent were studied. The Pd electrodeposition process via progressive 3D nucleation mechanism was controlled by the diffusion. Non-linear fitting methods were applied to obtain the kinetic parameters in the light of Harrison – Thirsk (H-T) and Scharifker – Hills (S-H) models for 3D nucleation and growth process. From that, the diffusion coefficient of Pd (II) in reline at ambient temperature was calculated by two different ways, and the obtained results showed that it is of cm2/s by using CV. Moreover, some important parameters such as the number density of active sites on the electrode surface (No) and the nucleation frequency per active site (A) were estimated by fitting experimental CAs data with Scharifker-Mostany model.
Electrodeposition, thermodynamic, electrochemical, progressive, palladium, deep eutectic solvent.
References
[2] L. J. Marmolejo, B. M. Teodocio, M. G. M. D. O. Yemha, M. R. Romo, E. M. A. Estrada, A. E. Mejía, M.T. R. Silva,
J. Mostany, M. P. Pardavé, Electrocatalytic Oxidation of Formic Acid by Palladium Nanoparticles Electrochemically Synthesized from a Deep Eutectic Solvent, Catalysis Today, Vol. 394, 2022, pp. 190-197, https://doi.org/10.1016/j.cattod.2021.10.012.
[3] T. D. V. Phuong, L. M. Quynh, N. N. Viet, N. T. Son, V. H. Pham, P. D. Tam, V. H. Nguyen, T. L. Manh, Effect of Temperature on the Mechanisms and Kinetics of Cobalt Electronucleation and Growth onto Glassy Carbon Electrode Using Reline Deep Eutectic Solvent, Journal of Electroanalytical Chemistry, Vol. 880, 2021, pp. 114823, https://doi.org/10.1016/j.jelechem.2020.114823.
[4] F. Soma, Q. Rayée, M. Bougouma, C. Baustert, C. B. Herman, T. Doneux, Palladium Electrochemistry in the Choline Chloride-Urea Deep Eutectic Solvent at Gold and Glassy Carbon Electrodes, Electrochimica Acta,
Vol. 345, 2020, pp. 136165, https://doi.org/10.1016/j.electacta.2020.136165.
[5] Y. Choi, J. Kim, H. G. Seo, H. L. Tuller, W. Jung, Nucleation and Growth Kinetics of Electrochemically Deposited Ceria Nanostructures for High-Temperature Electrocatalysis, Electrochimica Acta, Vol. 316, 2019, pp. 273-282, https://doi.org/10.1016/j.electacta.2019.05.135.
[6] K. Gao, X. Wei, G. Liu, B. Zhang, J. Zhang, Electrodeposition and Biocompatibility of Palladium and Phosphorus Doped Amorphous Hydrogenated Carbon Films, Chemical Physics, Vol. 537, 2020, pp. 110857, https://doi.org/10.1016/j.chemphys.2020.110857.
[7] I. Danaee, 2D–3D Nucleation and Growth of Palladium on Graphite Electrode, Journal of Industrial and Engineering Chemistry, Vol. 19, 2013, pp. 1008-1013, https://doi.org/10.1016/j.jiec.2012.11.024.
[8] S. Avisar, A. Shvets, Y. Shner, I. Popov, A. Bino, Nano-Porous Ruthenium-Palladium and Ruthenium-Platinum Alloys and Their Application as Hydrogenation Catalysts, Journal of Alloys and Compounds, Vol. 936, 2023, pp. 168326, https://doi.org/10.1016/j.jallcom.2022.168326.
[9] A. F. Oliveira, S. M. Silva, C. P. Rubinger, J. Ider, R. M. Rubinger, E. T. M. Oliveira, A. C. Doriguetto, H. B. D. Carvalho, Preparation and Characterization of Palladium-doped Titanium Dioxide for Solar Cell Applications, Materials Science and Engineering: B, Vol. 280, 2022, pp. 115702, https://doi.org/10.1016/j.mseb.2022.115702.
[10] J. Liu, H. Yu, L. Wang, Z. Deng, S. Z. Vatsadze, In-situ Preparation of Palladium Nanoparticles Loaded Ferrocene Based Metal-Organic Framework and its Application in Oxidation of Benzyl Alcohol, Journal of Molecular Structure,
Vol. 1198, 2019, pp. 126895, https://doi.org/10.1016/j.molstruc.2019.126895.
[11] J. Sun, Y. Li, Y. Liu, W. Zhou, X. Zhen, M. F. Lang, Facile Fabrication of a Flexible Electrode by Electrodeposition of Palladium on Silver Nanowires for Ethanol Oxidation, International Journal of Hydrogen Energy, Vol. 44, 2019,
pp. 5990-5996, https://doi.org/10.1016/j.ijhydene.2019.01.138.
[12] D. Song, Y. Li, X. Lu, M. Sun, H. Liu, G. Yu, F. Gao, Palladium-Copper Nanowires-based Biosensor for the Ultrasensitive Detection of Organophosphate Pesticides, Analytica Chimica Acta, Vol. 982, 2017, pp. 168-175, https://doi.org/10.1016/j.aca.2017.06.004.
[13] P. Santhosh, K. M. Manesh, S. Uthayakumar, S. Komathi, A. I. Gopalan, K. P. Lee, Fabrication of Enzymatic Glucose Biosensor Based on Palladium Nanoparticles Dispersed onto Poly (3, 4-Ethylenedioxythiophene) Nanofibers, Bioelectrochemistry, Vol. 75, 2009, pp. 61-66, https://doi.org/10.1016/j.bioelechem.2008.12.001.
[14] H. Wang, Y. Zhang, H. Li, B. Du, H. Ma, D. Wu, Q. Wei, A Silver–Palladium Alloy Nanoparticle-based Electrochemical Biosensor for Simultaneous Detection of Ractopamine, Clenbuterol and Salbutamol, Biosensors and Bioelectronics,
Vol. 49, 2013, pp. 14-19, https://doi.org/10.1016/j.bios.2013.04.041.
[15] I. Danaee, Kinetics and Mechanism of Palladium Electrodeposition on Graphite Electrode by Impedance and Noise Measurements, Journal of Electroanalytical Chemistry, Vol. 662, 2011, pp. 415-420, https://doi.org/10.1016/j.jelechem.2011.09.012.
[16] S. C. Chen, G. C. Tu, C. C. Y. Hung, C. A. Huang, M. H. Rei, Preparation of Palladium Membrane by Electroplating on AISI 316L Porous Stainless Steel Supports and its Use for Methanol Steam Reformer, Journal of Membrane Science, Vol. 314, 2008, pp. 5-14, https://doi.org/10.1016/j.memsci.2007.12.066.
[17] C. H. Lee, S. C. Wang, C. J. Yuan, M. F. Wen, K. S. Chang, Comparison of Amperometric Biosensors Fabricated by Palladium Sputtering, Palladium Electrodeposition and Nafion/Carbon Nanotube Casting on Screen-Printed Carbon Electrodes, Biosensors and Bioelectronics, Vol. 22, 2007, pp. 877-884, https://doi.org/10.1016/j.bios.2006.03.008.
[18] I. E. E. López, M. R. Romo, M. G. M. D. O. Yemha, P. M. Gil, M. T. R. Silva, J. Mostany, M. P. Pardavé, Palladium Nanoparticles Electrodeposition onto Glassy Carbon from a Deep Eutectic Solvent at 298 K and Their Catalytic Performance toward Formic Acid Oxidation, Journal of the Electrochemical Society, Vol. 166, 2018,
pp. 3205-3211, https://doi.org/10.1149/2.0251901jes.
[19] K. Yoshii, Y. Oshino, N. Tachikawa, K. Toshima, Y. Katayama, Electrodeposition of Palladium from Palladium (II) Acetylacetonate in an Amide-type Ionic Liquid, Electrochemistry Communications, Vol. 52, 2015, pp. 21-24, https://doi.org/10.1016/j.elecom.2015.01.003.
[20] G. Lanzinger, R. Böck, R. Freudenberger, T. Mehner, I. Scharf, T. Lampke, Electrodeposition of Palladium Films from Ionic Liquid (IL) and Deep Eutectic Solutions (DES): Physical–Chemical Characterisation of Non-Aqueous Electrolytes and Surface Morphology of Palladium Deposits, Transactions of the IMF, Vol. 91, 2013, pp. 133-140, https://doi.org/10.1179/0020296713Z.00000000097.
[21] M. Manolova, R. Böck, Electrodeposition of Pd from a Deep Eutectic Solvent System: Effect of Additives and Hydrodynamic Conditions, Transactions of the IMF, Vol. 97, 2019, pp. 161-168, https://doi.org/10.1080/00202967.2019.1605755.
[22] D. V. P. Thao, D. T. T. Ngan, D. V. Tuan, H. Lan, N. T. Nguyet, V. V. Thu, V. P. Hung, P. D. Tam, Facile Preparation of Copper Nanoparticles in Environmentally Friendly Solvent for DNA Sensor Application, Materials Today Communications, Vol. 33, 2022, pp. 104161, https://doi.org/10.1016/j.mtcomm.2022.104161.
[23] E. L. Smith, A. P. Abbott, K. S. Ryder, Deep Eutectic Solvents (DESs) and Their Applications, Chemical Reviews,
Vol. 114, 2014, pp. 11060-11082, https://doi.org/10.1021/cr300162p.
[24] A. S. Fuentes, A. F. Filippin, M. D. C. Aguirre, Pd nucleation and Growth Mechanism Deposited on Different Substrates, Procedia Materials Science, Vol. 8, 2015, pp. 541-550, https://doi.org/10.1016/j.mspro.2015.04.107.
[25] M. D. C. Aguirre, Nucleation and Growth Mechanisms of Palladium, Nanoflower-Shaped, and its Performance as Electrocatalyst in the Reduction of Cr (VI), Journal of Applied Electrochemistry, Vol. 49, 2019, pp. 795-809, https://doi.org/10.1007/s10800-019-01323-0.
[26] N. Elgrishi, B. D. M. Carthy, E. S. Rountree, J. L. Dempsey, Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes, ACS Catalysis, Vol. 6, 2016, pp. 3644-3659, https://doi.org/10.1021/acscatal.6b00778.
[27] J. M. Savéant, C. Costentin, Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry, John Wiley & sons Inc., 2019.
[28] K. Izutsu, Electrochemistry in Nonaqueous Solutions, Wiley-VCH, 2009.
[29] M. Jafarian, F. Gobal, I. Danaee, M.G. Mahjani, Impedance Spectroscopy Study of Aluminum Electrocrystallization from Basic Molten Salt (AlCl3–NaCl–KCl), Electrochimica Acta, Vol. 52, 2007, pp. 5437-5443, https://doi.org/10.1016/j.electacta.2007.02.068.
[30] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamental and Applications, John Wiley & Sons, Inc., 2001.
[31] M. P. Pardavé, B. R. Scharifker, E. M. Arce, M. R. Romo, Nucleation and Diffusion-Controlled Growth of Electroactive Centers: Reduction of Protons during Cobalt Electrodeposition, Electrochimica Acta, Vol. 50, 2005, pp. 4736-4745, https://doi.org/10.1016/j.electacta.2005.03.004.
[32] B. J. Hwang, R. Santhanam, Y. L. Lin, Nucleation and Growth Mechanism of Electroformation of Polypyrrole on a Heat-Treated Gold/Highly Oriented Pyrolytic Graphite, Electrochimica Acta, Vol. 46, 2001, pp. 2843-2853, http://dx.doi.org/10.1016/S0013-4686(01)00495-9.
[33] J. V. Sanchez, R. Diaz, P. Herrasti, P. Ocon, Electrogeneration and Characterization of Poly (3-Methylthiophene), Polymer Journal, Vol. 33, 2001, pp. 514-521, https://doi.org/10.1295/polymj.33.514.