Pham The Pham, Do Kim Thi Anh, Nguyen Duy Thien, Vu Hoang Linh, Le Hoang Dung, Nguyen Khac Man, Tran Hai Duc

Main Article Content

Abstract

The effect of additions of two series of SnO2 nanoparticles synthesized using two different methods on crystal structure and superconductivity of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ (BPSCCO) superconductors was investigated. Two series of spherical SnO2 nanoparticles were synthesized independently by using ultra-sonication (US-SnO2) and hydrothermal (HT-SnO2) methods. Polycrystalline samples of (Bi1.6Pb0.4Sr2Ca2Cu3O10+δ)1−x(SnO2)x, where x ranged between 0, 0.002 and 0.004, were fabricated by the solid-state reaction method. X-ray diffraction patterns showed a decrease in the volume fraction of the Bi-2223 and an increase in that of the Bi-2212 phases. Scanning electron microscopy images presented the “needle-like blossom” on the surface of the US-SnO2 doped samples, while the phenomenon was not found on the HT-SnO2 doped samples. The Tc was decreased extremely with US-SnO2 doping while slightly HT-SnO2 nanoparticle-doped samples. The field dependence of Jc, Jc(B), showed the opposite tendencies on two series of samples: Jc(B) was enhanced on the HT-SnO2 nanoparticle-doped samples, and that was decreased on UT-SnO2 nanoparticle-doped samples. The application of the Dew-Hughes model to explore the flux pinning mechanism exhibited that the point-like pinning centers were dominant on the HT-SnO2 doped samples. On US-SnO2 doped samples, however, the additional pinning center type was not found and could be explained by the observed over-sized SnO2 nano-needle.


 


 


 

Keywords: BPSCCO, Bi-2223, Jc, SnO2 nanoparticle, flux pinning.

References

[1] H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano A New High-Tc Oxide Superconductor Without a Rare Earth Element, H. R. Ott, Ten Years Supercond, 1980-1990, Springer, Dordrecht, 1993, pp. 303-304. https://doi.org/10.1007/978-94-011-1622-0_42.
[2] E. S. Nurbaisyatul, H. Azhan, K. Azman, N. Ibrahim, Effect of CeO2 Nanoparticle on the Structural and Electrical Properties of BSCCO-2223 High Temperature Superconductor, Solid State Phenomena, Vol. 307, 2020,
pp. 104-109, https://doi.org/10.4028/www.scientific.net/sSP.307.104.
[3] M. S. Shalaby, M. H. Hamed, N. M. Yousif, H. M. Hashem, The Impact of the Addition of Bi2Te3 Nanoparticles on the Structural and the Magnetic Properties of the Bi-2223 High-Tc Superconductor, Ceramics International,
Vol. 47, No. 18, 2021, pp. 25236-25248, https://doi.org/10.1016/j.ceramint.2021.05.244.
[4] H. U. Habermeier, Science and Technology of Cuprate-Based High Temperature Superconductor Thin Films, Heterostructures and Superlattices-the First 30 Years (Review Article), Low Temperature Physics, Vol. 42,
No. 10, 2016, pp. 840, https://doi.org/10.1063/1.4965889.
[5] B. Özkurt, Improvement of the Critical Current Density in Bi-2223 Ceramics by Sodium-Silver Co-Doping, Journal of Materials Science: Materials in Electronics, Vol. 25, No. 8, 2014, pp. 3295-3300, https://doi.org/10.1007/s10854-014-2017-9.
[6] Ş. Yavuz, Ö. Bilgili, K. Kocabaş, Effects of Superconducting Parameters of SnO2 Nanoparticles Addition on (Bi, Pb)-2223 Phase, Journal of Materials Science: Materials in Electronics, Vol. 27, No. 5, 2016, pp. 4526-4533, https://doi.org/10.1007/s10854-016-4327-6.
[7] N. H. Mohammed, R. Awad, A. I. A. Aly, I. H. Ibrahim, M. S. Hassan, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications, Vol. 3, No. 4, 2012, pp. 224-233, https://doi.org/10.4236/msa.2012.34033.
[8] S. Zhang, C. Li, Q. Hao, T. Lu, P. Zhang, Influences of Yb Substitution on the Intergrain Connections and Flux Pinning Properties of Bi-2212 Superconductors, Physica C: Superconductivity and Its Applications, Vol. 511, 2015, pp. 26-32, https://doi.org/10.1016/j.physc.2015.02.004.
[9] O. Bilgili, Y. Selamet, K. Kocabaş, Effects of Li Substitution in Bi-2223 Superconductors, Journal of Superconductivity and Novel Magnetism, Vol. 21, No. 8, 2008, pp. 439-449, https://doi.org/10.1007/s10948-008-0374-4.
[10] A. Ghattas, M. Annabi, M. Zouaoui, F. B. Azzouz, M. B. Salem, Flux Pinning by Al-Based Nano Particles Embedded in Polycrystalline (Bi,Pb)-2223 Superconductors, Physica C: Superconductivity and Its Applications, Vol. 468, No. 1, 2008, pp. 31-38, https://doi.org/10.1016/J.PHYSC.2007.10.006.
[11] K. Wei, R. A. Shukor, Superconducting and Transport Properties of (Bi-Pb)-Sr-Ca-Cu-O with Nano-Cr2O3 Additions, Journal of Electronic Materials, Vol. 36, No. 12, 2007, pp. 1648-1651, https://doi.org/10.1007/s11664-007-0287-1.
[12] A. T. Pham, D. T. Tran, H. H. Pham, N. H. Nam, L. T. Tai, D. H. Tran, Improvement of Flux Pinning Properties in Fe3O4 Nanoparticle-Doped Bi1.6Pb0.4Sr2Ca2Cu3O10+δ Superconductors, Materials Letters, Vol. 298, 2021,
pp. 130015-1-5, https://doi.org/10.1016/j.matlet.2021.130015.
[13] A. T. Pham, D. T. Tran, L. H. Vu, N. T. T. Chu, N. D. Thien, N. H. Nam, N. T. Binh, L. T. Tai, N. T. M. Hong,
N. T. Long, D. H. Tran, Effects of TiO2 Nanoparticle Addition on the Flux Pinning Properties of the Bi1.6Pb0.4Sr2Ca2Cu3O10+δ Ceramics, Ceramics International, Vol. 48, No. 14, 2022, pp. 20996-21004, https://doi.org/10.1016/J.CERAMINT.2022.04.093.
[14] S. M. Gupta, M. Tripathi, A Review of TiO2 Nanoparticles, Chinese Science Bulletin, Vol. 56, No. 16, 2011,
pp. 1639-1657, https://doi.org/10.1007/s11434-011-4476-1.
[15] M. A. Dheyab, A. A. Aziz, M. S. Jameel, N. Oladzadabbasabadi, Recent Advances in Synthesis, Modification, and Potential Application of Tin Oxide Nanoparticles, Surfaces and Interfaces, Vol. 28, 2022, pp. 101677, https://doi.org/10.1016/j.surfin.2021.101677.
[16] X. Y. Lu, A. Nagata, K. Watanabe, T. Nojima, K. Sugawara, S. Hanada, S. Kamada, Formation and Texture of Bi-2223 Phase during Sintering in a Temperature Gradient, Physica C, Vol. 412-414, No. Spec. Iss., 2004,
pp. 602-606, https://doi.org/10.1016/j.physc.2004.01.080.
[17] Q. Zhao, D. Ju, X. Deng, J. Huang, B. Cao, X. Xu, Morphology-Modulation of SnO2 Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications, Scientific Reports, Vol. 5, No. 1, 2015, pp. 1-9, https://doi.org/10.1038/srep07874.
[18] Z. Lu, Z. Zhao, L. Yang, S. Wang, H. Liu, Y. Feng, Y. Zhao, F. Feng, A Simple Method for Synthesis of Highly Efficient Flower-like SnO2 Photocatalyst Nanocomposites, Journal of Materials Science: Materials in Electronics, Vol. 30, No. 1, 2019, pp. 50-55, https://doi.org/10.1007/S10854-018-0247-Y/METRICS.
[19] I. Fatimah, G. Purwiandono, H. Hidayat, S. Sagadevan, S. A. I. S. M. Ghazali, W. C. Oh, R. A. Doong, Flower-like SnO2 Nanoparticle Biofabrication Using Pometia Pinnata Leaf Extract and Study on Its Photocatalytic and Antibacterial Activities, Nanomaterials 2021, Vol. 11, No. 11, 2021, pp. 3012, https://doi.org/10.3390/nano11113012.
[20] X. M. Wang, L. Q. Tao, M. Yuan, Z. P. Wang, J. Yu, D. Xie, F. Luo, X. Chen, C. P. Wong, Sea Urchin-like Microstructure Pressure Sensors with an Ultra-Broad Range and High Sensitivity, Nature Communications,
Vol. 12, No. 1, 2021, pp. 1-9, https://doi.org/10.1038/s41467-021-21958-y.
[21] G. Yildirim, Beginning Point of Metal to Insulator Transition for Bi-2223 Superconducting Matrix Doped with Eu Nanoparticles, Journal of Alloys and Compounds, Vol. 578, 2013, pp. 526-535, https://doi.org/10.1016/j.jallcom.2013.07.016.
[22] M. S. Shalaby, H. M. Hashem, T. R. Hammad, L. A. Wahab, K. H. Marzouk, S. Soltan, Higher Critical Current Density Achieved in Bi-2223 High-T c Superconductors, Journal of Radiation Research and Applied Sciences,
Vol. 9, No. 3, 2016, pp. 345-351, https://doi.org/10.1016/j.jrras.2016.04.001.
[23] D. D. Hughes, Flux Pinning Mechanisms in Type II Superconductors, Philosophical Magazine, Vol. 30, No. 2, 1974, pp. 293-305, https://doi.org/10.1080/14786439808206556.
[24] S. Vinu, P. M. Sarun, R. Shabna, A. Biju, U. Syamaprasad, Improved Microstructure and Flux Pinning Properties of Gd-Substituted (Bi,Pb)-2212 Superconductor Sintered between 846 and 860 °C, Materials Letters, Vol. 62,
No. 29, 2008, pp. 4421-4424, https://doi.org/10.1016/j.matlet.2008.07.052.