Distinctive Effects between Hydrothermal and Ultrasound Synthesized SnO2 Nanoparticles on Ceramic Bi1.6Pb0.4Sr2Ca2Cu3O10+δ Superconductor
Main Article Content
Abstract
The effect of additions of two series of SnO2 nanoparticles synthesized using two different methods on crystal structure and superconductivity of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ (BPSCCO) superconductors was investigated. Two series of spherical SnO2 nanoparticles were synthesized independently by using ultra-sonication (US-SnO2) and hydrothermal (HT-SnO2) methods. Polycrystalline samples of (Bi1.6Pb0.4Sr2Ca2Cu3O10+δ)1−x(SnO2)x, where x ranged between 0, 0.002 and 0.004, were fabricated by the solid-state reaction method. X-ray diffraction patterns showed a decrease in the volume fraction of the Bi-2223 and an increase in that of the Bi-2212 phases. Scanning electron microscopy images presented the “needle-like blossom” on the surface of the US-SnO2 doped samples, while the phenomenon was not found on the HT-SnO2 doped samples. The Tc was decreased extremely with US-SnO2 doping while slightly HT-SnO2 nanoparticle-doped samples. The field dependence of Jc, Jc(B), showed the opposite tendencies on two series of samples: Jc(B) was enhanced on the HT-SnO2 nanoparticle-doped samples, and that was decreased on UT-SnO2 nanoparticle-doped samples. The application of the Dew-Hughes model to explore the flux pinning mechanism exhibited that the point-like pinning centers were dominant on the HT-SnO2 doped samples. On US-SnO2 doped samples, however, the additional pinning center type was not found and could be explained by the observed over-sized SnO2 nano-needle.
References
[2] E. S. Nurbaisyatul, H. Azhan, K. Azman, N. Ibrahim, Effect of CeO2 Nanoparticle on the Structural and Electrical Properties of BSCCO-2223 High Temperature Superconductor, Solid State Phenomena, Vol. 307, 2020,
pp. 104-109, https://doi.org/10.4028/www.scientific.net/sSP.307.104.
[3] M. S. Shalaby, M. H. Hamed, N. M. Yousif, H. M. Hashem, The Impact of the Addition of Bi2Te3 Nanoparticles on the Structural and the Magnetic Properties of the Bi-2223 High-Tc Superconductor, Ceramics International,
Vol. 47, No. 18, 2021, pp. 25236-25248, https://doi.org/10.1016/j.ceramint.2021.05.244.
[4] H. U. Habermeier, Science and Technology of Cuprate-Based High Temperature Superconductor Thin Films, Heterostructures and Superlattices-the First 30 Years (Review Article), Low Temperature Physics, Vol. 42,
No. 10, 2016, pp. 840, https://doi.org/10.1063/1.4965889.
[5] B. Özkurt, Improvement of the Critical Current Density in Bi-2223 Ceramics by Sodium-Silver Co-Doping, Journal of Materials Science: Materials in Electronics, Vol. 25, No. 8, 2014, pp. 3295-3300, https://doi.org/10.1007/s10854-014-2017-9.
[6] Ş. Yavuz, Ö. Bilgili, K. Kocabaş, Effects of Superconducting Parameters of SnO2 Nanoparticles Addition on (Bi, Pb)-2223 Phase, Journal of Materials Science: Materials in Electronics, Vol. 27, No. 5, 2016, pp. 4526-4533, https://doi.org/10.1007/s10854-016-4327-6.
[7] N. H. Mohammed, R. Awad, A. I. A. Aly, I. H. Ibrahim, M. S. Hassan, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications, Vol. 3, No. 4, 2012, pp. 224-233, https://doi.org/10.4236/msa.2012.34033.
[8] S. Zhang, C. Li, Q. Hao, T. Lu, P. Zhang, Influences of Yb Substitution on the Intergrain Connections and Flux Pinning Properties of Bi-2212 Superconductors, Physica C: Superconductivity and Its Applications, Vol. 511, 2015, pp. 26-32, https://doi.org/10.1016/j.physc.2015.02.004.
[9] O. Bilgili, Y. Selamet, K. Kocabaş, Effects of Li Substitution in Bi-2223 Superconductors, Journal of Superconductivity and Novel Magnetism, Vol. 21, No. 8, 2008, pp. 439-449, https://doi.org/10.1007/s10948-008-0374-4.
[10] A. Ghattas, M. Annabi, M. Zouaoui, F. B. Azzouz, M. B. Salem, Flux Pinning by Al-Based Nano Particles Embedded in Polycrystalline (Bi,Pb)-2223 Superconductors, Physica C: Superconductivity and Its Applications, Vol. 468, No. 1, 2008, pp. 31-38, https://doi.org/10.1016/J.PHYSC.2007.10.006.
[11] K. Wei, R. A. Shukor, Superconducting and Transport Properties of (Bi-Pb)-Sr-Ca-Cu-O with Nano-Cr2O3 Additions, Journal of Electronic Materials, Vol. 36, No. 12, 2007, pp. 1648-1651, https://doi.org/10.1007/s11664-007-0287-1.
[12] A. T. Pham, D. T. Tran, H. H. Pham, N. H. Nam, L. T. Tai, D. H. Tran, Improvement of Flux Pinning Properties in Fe3O4 Nanoparticle-Doped Bi1.6Pb0.4Sr2Ca2Cu3O10+δ Superconductors, Materials Letters, Vol. 298, 2021,
pp. 130015-1-5, https://doi.org/10.1016/j.matlet.2021.130015.
[13] A. T. Pham, D. T. Tran, L. H. Vu, N. T. T. Chu, N. D. Thien, N. H. Nam, N. T. Binh, L. T. Tai, N. T. M. Hong,
N. T. Long, D. H. Tran, Effects of TiO2 Nanoparticle Addition on the Flux Pinning Properties of the Bi1.6Pb0.4Sr2Ca2Cu3O10+δ Ceramics, Ceramics International, Vol. 48, No. 14, 2022, pp. 20996-21004, https://doi.org/10.1016/J.CERAMINT.2022.04.093.
[14] S. M. Gupta, M. Tripathi, A Review of TiO2 Nanoparticles, Chinese Science Bulletin, Vol. 56, No. 16, 2011,
pp. 1639-1657, https://doi.org/10.1007/s11434-011-4476-1.
[15] M. A. Dheyab, A. A. Aziz, M. S. Jameel, N. Oladzadabbasabadi, Recent Advances in Synthesis, Modification, and Potential Application of Tin Oxide Nanoparticles, Surfaces and Interfaces, Vol. 28, 2022, pp. 101677, https://doi.org/10.1016/j.surfin.2021.101677.
[16] X. Y. Lu, A. Nagata, K. Watanabe, T. Nojima, K. Sugawara, S. Hanada, S. Kamada, Formation and Texture of Bi-2223 Phase during Sintering in a Temperature Gradient, Physica C, Vol. 412-414, No. Spec. Iss., 2004,
pp. 602-606, https://doi.org/10.1016/j.physc.2004.01.080.
[17] Q. Zhao, D. Ju, X. Deng, J. Huang, B. Cao, X. Xu, Morphology-Modulation of SnO2 Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications, Scientific Reports, Vol. 5, No. 1, 2015, pp. 1-9, https://doi.org/10.1038/srep07874.
[18] Z. Lu, Z. Zhao, L. Yang, S. Wang, H. Liu, Y. Feng, Y. Zhao, F. Feng, A Simple Method for Synthesis of Highly Efficient Flower-like SnO2 Photocatalyst Nanocomposites, Journal of Materials Science: Materials in Electronics, Vol. 30, No. 1, 2019, pp. 50-55, https://doi.org/10.1007/S10854-018-0247-Y/METRICS.
[19] I. Fatimah, G. Purwiandono, H. Hidayat, S. Sagadevan, S. A. I. S. M. Ghazali, W. C. Oh, R. A. Doong, Flower-like SnO2 Nanoparticle Biofabrication Using Pometia Pinnata Leaf Extract and Study on Its Photocatalytic and Antibacterial Activities, Nanomaterials 2021, Vol. 11, No. 11, 2021, pp. 3012, https://doi.org/10.3390/nano11113012.
[20] X. M. Wang, L. Q. Tao, M. Yuan, Z. P. Wang, J. Yu, D. Xie, F. Luo, X. Chen, C. P. Wong, Sea Urchin-like Microstructure Pressure Sensors with an Ultra-Broad Range and High Sensitivity, Nature Communications,
Vol. 12, No. 1, 2021, pp. 1-9, https://doi.org/10.1038/s41467-021-21958-y.
[21] G. Yildirim, Beginning Point of Metal to Insulator Transition for Bi-2223 Superconducting Matrix Doped with Eu Nanoparticles, Journal of Alloys and Compounds, Vol. 578, 2013, pp. 526-535, https://doi.org/10.1016/j.jallcom.2013.07.016.
[22] M. S. Shalaby, H. M. Hashem, T. R. Hammad, L. A. Wahab, K. H. Marzouk, S. Soltan, Higher Critical Current Density Achieved in Bi-2223 High-T c Superconductors, Journal of Radiation Research and Applied Sciences,
Vol. 9, No. 3, 2016, pp. 345-351, https://doi.org/10.1016/j.jrras.2016.04.001.
[23] D. D. Hughes, Flux Pinning Mechanisms in Type II Superconductors, Philosophical Magazine, Vol. 30, No. 2, 1974, pp. 293-305, https://doi.org/10.1080/14786439808206556.
[24] S. Vinu, P. M. Sarun, R. Shabna, A. Biju, U. Syamaprasad, Improved Microstructure and Flux Pinning Properties of Gd-Substituted (Bi,Pb)-2212 Superconductor Sintered between 846 and 860 °C, Materials Letters, Vol. 62,
No. 29, 2008, pp. 4421-4424, https://doi.org/10.1016/j.matlet.2008.07.052.