Dao Thi Le Thuy, Le Mai Dung

Main Article Content

Abstract

The fundamentally well-known process of Bhabha  is studied from the theoretical view of unparticle physics in the prominent Randall-Sundrum model. The cross-sections independently for photon (γ), Z boson (Z), vector unparticle (Uμ), Higgs (h), radion (), and scalar unparticle (U) exchange are calculated and evaluated. Numerical calculations showed that the contribution of unparticle exchange dominates in very high energy regions. While the standard model exchanges as γ and Z are predominant in the lower energy region, h and contribution is very small in comparison with the other exchanges. The results are plotted in the energy ranges available in the present designs of accelerators and near future energy upgrades of the International Linear Collider (ILC) and The Compact Linear Collider (CLIC).


 

Keywords: Bhabha scattering, unparticle physics, collisions, ILC collider, Randall-Sundrum model.

References

[1] L. Randall, R. Sundrum, A Large Mass Hierarchy from a Small Extra Dimension, Phys. Rev. Lett. Vol. 83,
No. 17, 1999, pp. 3370-3373, https://link.aps.org/doi/10.1103/PhysRevLett.83.3370.
[2] N. A. Hamed, S. Dimopoulos, G. Dvali, The Hierarchy Problem and New Dimensions at a Millimeter, Phys. Lett. B, Vol. 429, No. 3, 1998, pp. 263-272, arXiv:hep-ph/9803315v1.
[3] W. D. Goldberger, M. B. Wise, Modulus Stabilization with Bulk Fields, Phys. Rev. Lett. Vol. 83, No. 24, 1999, pp. 4922-4925; W. D. Goldberger, M. B. Wise, Bulk fields in the Randall-Sundrum Compactification Scenario, Phys. Rev. D Vol. 60, No. 10, 1999, pp. 107505, https//doi.org/10.1103/PhysRevD.60.107505.
[4] M. Luty, R. Sundrum, Radius Stabilization and Anomaly-Mediated Supersymmetry Breaking, Phys. Rev. D,
Vol. 62, No. 3, 2000, pp. 035008, https//doi.org/10.1103/physrevd.62.035008.
[5] C. Csaki, M. Graesser, L. Randall, J. Terning, Cosmology of Brane Models with Radion Stabilization, Phys. Rev. D, Vol. 62, No. 3, 2000, pp. 045015, https//doi.org/10.1103/physrevd.62.045015.
[6] K. Fujii, C. Grojean, M. E. Peskin, T. Barklow, Y. Gao, S. Kanemura, H. Kim, J. List, M. Nojiri, M. Perelstein,
R. Pöschl, J. Reuter, F. Simon, T. Tanabe, J. D. Wells, J. Yu, H. Baer, M. Berggren, S. Heinemeyer, S. L. Lehtinen, J. Tian, G. Wilson, J. Yan, H. Murayama, J. Brau, Physics Case for the 250 GeV Stage of the International Linear Collider, 2018, https//doi.org/10.48550/ARXIV.1702.05333.
[7] H. Baer, M. Berggren, J. List, M. M. Nojiri, M. Perelstein, A. Pierce, W. Porod, T. Tanabe, Physics Case for the ILC Project: Perspective from Beyond The Standard Model, ePrint 1710.07621, 2013 https//doi.org/10.48550/ARXIV.1307.5248.
[8] A. Aryshev, T. Behnke et al., The International Linear Collider: Report to Snowmass 2021, 2022, eprint 2203.07622, https//doi.org/10.48550/ARXIV.2203.07622.
[9] T. Lesiak, Future e+e− Colliders at the Energy Frontier, EPJ Web Conf, Vol. 206, 2019, pp. 08001, https//doi.org/10.1051/epjconf/201920608001.
[10] K. Fujii, C. Grojean, M. E. Peskin, T. Barklow, Y. Gao, S. Kanemura, J. List, M. Nojiri, M. Perelstein, R. Poeschl et al., ILC Study Questions for Snowmass 2021, ePrint 2007.03650, arXiv:2007.03650v3.
[11] K. Fujii, C. Grojean, M. E. Peskin, T. Barklow, Y. Gao, S. Kanemura, H. Kim, J. List, M. Nojiri, M. Perelstein et al., Tests of the Standard Model at the International Linear Collider, 2019, ePrint 1908.11299, arXiv:1908.11299v4.
[12] K. Fujii, C. Grojean, M. E. Peskin, T. Barklow, Y. Gao, S. Kanemura, H. Kim, J. List, M. Nojiri, M. Perelstein et al., The Role of Positron Polarization for the Initial 250 GeV Stage of the International Linear Collider,
Vol 460, 2008, pp. 131-243, arXiv:hep-ph/0507011v1.
[13] T. Banks, A. Zaks, On the Phase Structure of Vector-like Gauge Theories With Massless Fermions, Nucl. Phys. B, Vol. 196, No. 2, 1982, pp. 189-204.
[14] H. Georgi, Unparticle Physics, Phys. Rev. Lett. Vol. 98, No. 22, 2007, pp. 221601, https//doi.org/10.1103/physrevlett.98.221601.
[15] S. Coleman, E. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D Vol 7, No. 6, 1973, pp. 1888-1910, 10.1103/PhysRevD.7.1888.
[16] K. Cheung, W. Y. Keung, T. C. Yuan, Collider Phenomenology of Unparticle Physics, Phys. Rev. D Vol. 76,
No. 5, 2007, pp. 055003, https//doi.org/10.1103/PhysRevD.76.055003.
[17] S. L. Chen, X. G. He, Interactions of Unparticles with Standard Model Particles, Phys. Rev. D Vol. 76, No. 9, 2007, pp. 091702, https//doi.org/10.1103/PhysRevD.76.091702.
[18] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, Addision-Wesley Publishing, 2018.
[19] D. Dominici, B. Grzadkowski, J. F. Gunion, M. Toharia, The Scalar Sector of the Randall–Sundrum Model, Nucl. Phys. B, Vol. 671, 2003, pp. 243-292, https://doi.org/10.1016/j.nuclphysb.2003.08.020.
[20] D. V. Soa, D. T. L. Thuy, N. H. Thao, T. D. Tham, Radion Production γe- Collisions, Mod. Phys. Lett. A, Vol. 27, No. 23, 2012, https://doi.org/10.1142/S021773231250126X.
[21] P. Bambade, T. Barklow, T. Behnke et al., The International Linear Collider: A Global Project, ePrint 1903.01629, 2019, arXiv:1903.01629v3.
[22] M. Harrison, M. Ross, N. Walker, Luminosity Upgrades For ILC, ePrint 1308.3726, 2013, arXiv:1308.3726v1.
[23] D. Dannheim, P. Lebrun, L. Linssen, D. Schulte, F. Simon, S. Stapnes, N. Toge, H. Weerts, J. Wells, CLIC e+e- Linear Collider Studies Process 2013, ePrint 1305.5766, 2013, arXiv:1305.5766v1.
[24] L. Linssen, A. Miyamoto, M. Stanitzki, H. Weerts, Physics and Detectors At CLIC: CLIC Conceptual Design Report, ePrint 1202.5940, 2012, arXiv:1202.5940v1.