Nguyen Thu Nhan

Main Article Content

Abstract

Structural properties of amorphous vanadium pentoxide (V25) under compression have been investigated by molecular dynamics simulation. A simulated amorphous V2O5 was composed of basic structural units of type VO5, VO6 at low-pressures and VO6, VO7 at high-pressures. These basic structural units were connected by vertex-, edge- and face- shared links to form a structural network. The random distribution of atoms and void clusters led to a high degree of disorder in V2O5 structure. Under compression, the fraction of average vertex-, edge- and face- shared links increased strongly. The number of void clusters (VCs) and void tubes (VTs) also increased as the large voids are divided into smaller voids. The obtained results demonstrate that the decreasing of cross-section and increasing of length in VTs mainly cause increasing the ion conductivity of amorphous V2O5.


 

Keywords: Amorphous V2O5, void, link, compression, molecular dynamics..

References

[1] C. Sanchez, J. Livage, G. Lucazeau, Infrared and Raman Study of Amorphous V2O5, Journal of Raman
Spectroscopy, Vol. 12, No. 1, 1982, pp. 68-72, https://doi.org/10.1002/jrs.1250120110.
[2] S. Wu, Y. Ding, L. Hu, X. Zhang, Y. Huang, S. Chen, Amorphous V2O5 as High-performance Cathode for Aqueous Zinc Ion Battery, Mater. Let., Vol. 277, 2020, pp. 128268, https://doi.org/10.1016/j.matlet.2020.128268.
[3] A. Kuddus, M. F. Rahman, S. Ahmmed, J. Hossain, A. B. M. Ismail, Role of Facile Synthesized V2O5 as Pore Transport Layer for CdS/CdTe Heterojunction Solar Cell: Validation of Simulation Using Experimental Data, Super, and Micro., Vol. 132, 2019, pp. 106168, https://doi.org/10.1016/j.spmi.2019.106168.
[4] S. Petnikota, R. Chua, Y. Zhou, E. Edison and M. Srinivasan, Amorphous Vanadium Oxide Thin Films as Stable Performing Cathodes of Lithium and Sodium-Ion Batteries, Nano. Res. Let. Vol.13, 2018, pp. 363, https://doi.org/10.1186/s11671-018-2766-0.
[5] A. Gaddam, A. R. Allu, H. R. Fernandes, G. E. Stan, C. C. Negrila, A. P. Jamale, J. M. F. Ferreira, Role of Vanadium Oxide on The Lithium Silicate Glass Structure and Properties, J. Ame. Ceram. Soc., Vol. 104, 2021, pp. 2495-2505, https://doi.org/10.1111/jace.17671.
[6] H. O. Tekin, S. A. M. Issa, G. Kilic, H. M. H. Zakaly, M. M. Abuzaid, N. Tarhan, M. H. M. Zaid, In-Silico Monte Carlo Simulation Trials for Investigation of V2O5 Reinforcement Effect on Ternary Zinc Borate Glasses: Nuclear Radiation Shielding Dynamics, Mater, Vol. 14, 2021, pp. 1158, https://doi.org/10.3390/ma14051158.
[7] J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries, Sci. Vol. 343, 2014, pp. 519, https://doi.org/10.1126/science.1246432.
[8] H. Munemura, S. Tanaka, K. Maruyama, M. Misawa, Structural Study of Li2O–V2O5 Glasses by Neutron and
X-ray Diffraction, J. Non-Cryst. Solids, Vol. 312-314, 2002, pp. 557, https://doi.org/10.1016/s0022-3093(02)01770-2.
[9] W. Li, S. H. Garofalini, Molecular Dynamics Simulations of Li Insertion in a Nanocrystalline V2O5 Thin Film Cathode, J. Elec. Soc., Vol. 152, 2005, pp. A364, https://doi.org/10.1149/1.1848345.
[10] E. Uchaker, Y. Zheng, S. Li, S. L. Candelaria, S. Hu, G. Cao, Better than Crystalline: Amorphous Vanadium Oxide for Sodium-ion Battery, J. Mater. Chem. A, Vol. 2, 2014, pp. 18208-18214, https://doi.org/10.1039/C4TA03788J.
[11] V. P. Filonenko, M. Sundberg, P. E. Werner, I. P. Zibrov, Structure of a High-pressure Phase of Vanadium Pentoxide, Acta Cryst. B, Vol. 60, 2004, pp. 375-381, https://doi.org/10.1107/s0108768104012881.
[12] R. B. Hadjean, M. B. Smirnov, K. S. Smirnov, V. Y. Kazimirov, J. M. G. Amores, U. Amador, J. P. P. Ramos, Lattice Dynamics of β-V2O5: Raman Spectroscopic Insight into the Atomistic Structure of a High-Pressure Vanadium Pentoxide Polymorph, Inorg. Chem., Vol. 51. 2012, pp. 3194-3201,
https://doi.org/10.1021/ic202651b.
[13] I. Loa, A. Grzechnik, U. Schwarz, K. Syassen, M. Hanfland, R. K. Kremer, Vanadium Oxides V2O5 and NaV2O5 under High Pressures: Structural, Vibrational, and Electronic Properties, J. Alloy. Comp. Vol. 317-318, 2001,
pp. 103-108, https://doi.org/10.1016/s0925-8388(00)01404-3.
[14] A. Grzechnik, Local Structures in High Pressure Phases of V2O5, Chem. Mater., Vol. 10, 1998, pp. 2505-2509, https://doi.org/10.1021/cm980245z.
[15] B. Singh, M. K. GuHTa, S. K. Mishra, R. Mittal, P. U. Sastry, S. Rols, S. L. Chaplot, Phys. Anomalous Lattice Behavior of Vanadium Pentoxide (V2O5): X-ray Diffraction, Inelastic Neutron Scattering and AB Initio Lattice Dynamics, Chem. Chem. Phys., Vol. 19, 2017, pp. 17967-17984, https://doi.org/10.1039/c7cp01904a.
[16] T. C. Lin, B. J. Jheng, H. M. Yen, W. C. Huang, Thin Film as an Ionic Storage Layer for Electrochromic Application, Mater., Vol. 15, 2022, pp. 4598, https://doi.org/10.3390/ma15134598.
[17] M. E. A. Dompablo, U. Amador, J. M. G. Amores, C. Baehtz, N. Biskup, E. Morán, High Pressure Materials for Energy Storage: The Case of V2O5, J. Phys.: Confer. Seri., Vol. 121, 2008, pp. 032001, https://doi.org/10.1088/1742-6596/121/3/032001.
[18] S. Wu, Y. Ding, L. Hu, X. Zhang, Y. Huang, S. Chen, Amorphous V2O5 as High-performance Cathode for Aqueous Zinc Ion Battery, Mater. Let., Vol. 277, 2020, pp. 128268, https://doi.org/10.1016/j.matlet.2020.128268.
[19] A. Mosset, P. Lecante, J. Galy, J. Livage, Structural Analysis of Amorphous V2O5 by Large-angle X-ray Scattering, Phi. Mag. B, Vol. 46, 1982, pp.137-149, https://doi.org/10.1080/13642818208246430.
[20] H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, T. Rajh, Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries, J. Phys. Chem. Let., Vol. 2, 2011, pp. 2560-2565, https://doi.org/10.1021/jz2012066.
[21] H. T. Fang, M. Liu, D. W. Wang, T. Sun, D. S. Guan, F. Li, H. M. Cheng, Comparison of the Rate Capability of Nanostructured Amorphous and Anatase TiO2 for Lithium Insertion Using Anodic TiO2 Nanotube Arrays, Nanotech., Vol. 20, 2009, pp. 225701, https://doi.org/10.1088/0957-4484/20/22/225701.
[22] T. Aoyagi, S. Kohara, T. Naito, Y. Onodera, M. Kodama, T. Onodera, H. Takizawa, Controlling Oxygen Coordination and Valence of Network Forming Cations, Scien. Reports, Vol. 10, 2020, pp. 7178, https://doi.org/10.1038/s41598-020-63786-y.
[23] P. K. Hung, L. T. Vinh, D. M. Nghiep, P. N. Nguyen, Computer Simulation of Liquid Al2O3, J. Phys.: Condens. Matter, Vol. 18, 2006, pp. 9309-9322, https://doi.org/10.1088/0953-8984/18/41/001.