Nguyen Thi Thuy

Main Article Content

Abstract

A novel Ge15As15Se17Te53 chalcogenide-based photonic crystal fiber with octagonal cladding was designed which exhibits low confinement loss and high nonlinearity. The dispersion properties were investigated over a wide wavelength range of up to 11 µm. Based on preliminary simulation results, three fibers with suitable characteristic quantities are proposed for supercontinuum generation. Among these fibers, fiber #F1 (Ʌ = 3.1 µm, d/Ʌ = 0.3) exhibits all-normal dispersion with a small value of −0.374 ps/[nm.km]. At the same time, the highest nonlinear coefficient of 2876.861 W−1.km−1 at the pump wavelength of 5.45 µm is also found. The #F2 fiber (Ʌ= 4.5 µm, d/Ʌ = 0.3) has anomalous flat dispersion with one zero dispersion wavelength. This fiber has the smallest dispersion and lowest confinement loss values of 0.281 ps/[nm.km] and 1.360×10−9 at 5.7 µm pump wavelength, respectively. With the anomalous dispersion, #F3 fiber
(Ʌ = 3.5 µm, d/Ʌ = 0.3) offers a small effective mode area of 20.892 µm2 and a low confinement loss of 4.974×10−8 dB/m at 5.25 µm wavelength. The proposed fibers can possess a low peak power, broadband supercontinuum source, suitable for application fields such as optical communication and biomedical sensors.

Keywords: Ge15As15Se17Te53 photonic crystal fibers, octagonal cladding, flat dispersion, high nonlinear coefficient, low confinement loss.

References

[1] L. Thévenaz, Advanced Fiber Optics: Concepts and Technology, EPFL Press, New York, EBook ISBN: 9780429156335, 2011, https://doi.org/10.1201/b16404.
[2] M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, F. K. Tittel, Design of a Mid-Infrared Suspended Chalcogenide/Silica-on-Silicon Slot-Waveguide Spectroscopic Gas Sensor with Enhanced Light-Gas Interaction Effect, Sensor and Actuators B: Chemical, Vol. 297, 2019, pp. 126732, https://doi.org/10.1016/j.snb.2019.126732.
[3] D. Wasserman, R. Singh, T. Akalin, Special Issue on Mid-Infrared and THz photonics, Journal of Optics,
Vol. 16, 2014, pp. 090201, https://doi.org/10.1088/2040-8978/16/9/090201.
[4] T. N. Thi, D. H. Trong, L. C. Van, Supercontinuum Generation in Ultra-Flattened Near-Zero Dispersion PCF with C7H8 Infiltration, Optical and Quantum Electronics, Vol. 55, 2023, pp. 93, https://doi.org/10.1007/s11082-022-04351-x.
[5] T. N. Thi, L. C. Van, Supercontinuum Spectra Above 2700 nm in Circular Lattice Photonic Crystal Fiber Infiltrated Chloroform with The Low Peak Power, Journal of Computational Electronics, 2023, pp. 31, https://doi.org/10.1007/s10825-023-02078-w.
[6] T. N. Thi, L. C. Van, Supercontinuum Generation Based on Suspended Core Fiber Infltrated with Butanol, Journal of Optics, 2023, pp. 15, https://doi.org/10.1007/s12596-023-01323-6.
[7] K. C. Selva, R. Anbazhagan, Investigation on Chalcogenide and Silica Based Photonic Crystal Fibers with Circular And Octagonal Core, AEU - International Journal of Electronics and Communications, Vol. 72, 2017, pp. 40-45, https://doi.org/10.1016/j.aeue.2016.11.018.
[8] M. Z. Alam, M. I. Tahmid, S. T. Mouna, M. A. Islam, M. S. Alam, Design of a Novel Star Type Photonic Crystal Fiber for Mid-Infrared Supercontinuum Generation, Optics Communications, Vol. 500, No. 1, 2021, pp. 127322, https://doi.org/10.1016/j.optcom.2021.127322.
[9] X. Zou, T. Izumitani, Spectroscopic Properties and Mechanisms of Excited State Absorption and Energy Transfer Upconversion for Er3+-Doped Glasses, Journal Non-Crystalline Solids, Vol. 162, No. (1-2), 1993, pp. 68-80, https://doi.org/10.1016/0022-3093(93)90742-G.
[10] D. Jayasuriya, C. R. Petersen, D. Furniss, C. Markos, Z. Tang, M. S. Habib, O. Bang, T. M. Benson, A. B. Seddon, Mid-IR Supercontinuum Generation in Birefringent, Low Loss, Ultra-High Numerical Aperture Ge-As-Se-Te Chalcogenide Step-Index Fiber, Optical Materials Express, Vol. 9, No. 6, 2019, pp. 2617-2629, https://doi.org/10.1364/ome.9.002617.
[11] A. Medjouri, D. Abed, Z. Becer, Numerical Investigation of a Broadband Coherent Supercontinuum Generation in Ga8sb32s60 Chalcogenide Photonic Crystal Fiber with All-Normal Dispersion, Opto-Electronics Review,
Vol. 27, No. 1, 2019, pp. 1-9, https://doi.org/10.1016/j.opelre.2019.01.003.
[12] A. Medjouri, D. Abed, Mid-Infrared Broadband Ultraflat-Top Supercontinuum Generation in Dispersion Engineered Ge-Sb-Se Chalcogenide Photonic Crystal Fiber, Optical Materials, Vol. 97, 2019, pp. 109391, https://doi.org/10.1016/j.optmat.2019.109391.
[13] A. Medjouria, D. Abed, Design and Modelling of All-Normal Dispersion As39Se61 Chalcogenide Photonic Crystal Fiber for Flat-Top Coherent Mid-Infrared Supercontinuum Generation, Optical Fiber Technology, Vol. 50, 2019, pp. 154-164, https://doi.org/10.1016/j.yofte.2019.03.021.
[14] M. Kalantari, A. Karimkhani, H. Saghaei, Ultra-Wide Mid-IR Supercontinuum Generation in As2S3 Photonic Crystal Fiber by Rods Filling Technique, Optik, Vol. 158, 2018, pp. 142-151, https://doi.org/10.1016/j.ijleo.2017.12.014.
[15] P. Chauhan, A. Kumar, Y. Kalra, Mid-Infrared Broadband Supercontinuum Generation in a Highly Nonlinear Rectangular Core Chalcogenide Photonic Crystal Fiber, Optical Fiber Technology, Vol. 46, 2018, pp. 174-178, https://doi.org/10.1016/j.yofte.2018.10.004.
[16] P. Chauhan, A. Kumar, Y. Kalra, Numerical Exploration of Coherent Supercontinuum Generation in Multicomponent GeSe2-As2Se3-PbSe Chalcogenide Based Photonic Crystal Fiber, Optical Fiber Technology,
Vol. 54, 2020, pp. 102100, https://doi.org/10.1016/j.yofte.2019.102100.
[17] S. Guo, F. Wu, S. Albin, H. Tai, R. S. Rogowski, Loss and Dispersion Analysis of Microstructured Fibers by Finite-Difference Method, Optics Express, Vol. 12, No. 15, 2004, pp. 3341-3352, http://dx.doi.org/10.1364/OPEX.12.003341.
[18] N. Mi, B. Wu, L. Jiang, L. Sun, Z. Zhao, X. Wang, P. Zhang, Z. Pan, Z. Liu, S. Dai, Q. Nie, Structure Design and Numerical Evaluation of Highly Nonlinear Suspended-Core Chalcogenide Fbers, Journal of Non-Crystalline Solids, Vol. 464, 2017, pp. 44-50, http://dx.doi.org/10.1016/j.jnoncrysol.2017.03.025.
[19] A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, D. Tang, Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications, J. Am. Ceram. Soc., Vol. 99, No. 1, 2016, pp. 12-15, http://dx.doi.org/10.1111/jace.14025.
[20] G. P. Agrawal, Nonlinear Fiber Optics (5th Edition), Academic Press, Elsevier, 2013, ISBN: 978-0-12-397023-7, https://doi.org/10.1016/C2011-0-00045-5.
[21] D. S. Rao, R. Engelsholm, I. Gonzalo, B. Zhou, P. Bowen, P. Moselund, O. Bang, M. Bache, Ultra-Low-Noise Supercontinuum Generation with a Flat Near-Zero Normal Dispersion Fiber, Optics Letters, Vol. 44, No. 9, 2019, pp. 2216-2219, https://doi.org/10.1364/OL.44.002216.
[22] A. Rampur, D. M. Spangenberg, G. Stępniewski, D. Dobrakowski, K. Tarnowski, K. Stefańska, Temporal Fine Structure of All-Normal Dispersion Fiber Supercontinuum Pulses Caused by Non-Ideal Pump Pulse Shapes, Optics Express, Vol. 28, No. 11, 2020, pp. 16579-16593, https://doi.org/10.1364/OE.392871.
[23] D. V. Skryabin, F. Luan, J. C. Knight, P. S. J. Russell, Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers, Science, Vol. 301, No. 5640, 2003, pp. 1705-1708, https://doi.org/10.1126/science.1088516.
[24] G. Genty, M. Lehtonen, H. Ludvigsen, Effect of Cross-Phase Modulation on Supercontinuum Generated in Microstructured Fibers with Sub-30 fs Pulses, Optics Express, Vol. 12, No. 19, 2004, pp. 4614-4624, https://doi.org/10.1364/OPEX.12.004614.
[25] Y. Huang, H. Yang, S. Zhao, Y. Mao, S. Chen, Design of Photonic Crystal Fibers with Flat Dispersion and Three Zero Dispersion Wavelengths for Coherent Supercontinuum Generation in both Normal and Anomalous Regions, Results in Physics, Vol. 23, 2021, pp. 104033, https://doi.org/10.1016/j.rinp.2021.104033.
[26] E. N. Tsoy, C. M. D. Sterke, Theoretical Analysis of The Self-Frequency Shift Near Zero-Dispersion Points: Soliton Spectral Tunneling, Physical Review A, Vol. 76, No. 4, 2007, pp. 043804, https://doi.org/10.1103/PhysRevA.76.043804.
[27] Y. Wu, M. Meneghetti, J. Troles, J. L. Adam, Chalcogenide Microstructured Optical Fibers for Mid-Infrared Supercontinuum Generation: Interest, Fabrication, and Applications, Appl. Sci., Vol. 9, No. 8, 2018, pp. 1637, https://doi.org/10.3390/app8091637.
[28] M. R. Karim, H. Ahmad, B. M. A. Rahman, Design and Modeling of Dispersion-Engineered All-Chalcogenide Triangular-Core Fiber for Mid Infrared-Region Supercontinuum Generation, Journal of Optical Society of Americal B, Vol. 35, No. 2, 2018, pp. 266-275, http://dx.doi.org/10.1364/JOSAB.35.000266.