Mai Thi Lan, Pham Tri Dung

Main Article Content

Abstract

This work provides insights into the effects of both temperature and pressure on structure, dynamics, and diffusion mechanism  in liquid magnesium oxide (MgO) systems. The Molecular Dynamics simulation (MDs) method and a kinetic approach are employed in this research. The structure of liquid MgO undergoes changes under compression, primarily consisting of the polyhedral units of MgO3, MgO4, and MgO5 at ambient pressure and MgO5 and MgO6at high pressures up to 25 GPa. Meanwhile, the structure of liquid MgO is still composed of the polyhedral units of MgO3, MgO4, and MgO5 at different temperatures. The diffusion mechanism in liquid MgO involves the transition of the polyhedral units from MgOxto MgOx±1. We found that two factors contribute significantly to the diffusion process of the liquid MgO system including the mean square of transition dtr and the rate of transition rtr coefficient.

Keywords: The liquid MgO, MD, structure, diffusion.

References

[1] H. Wang, X. Kou, S. Wang, J. Zhou, X. Zhang, J. Li, Structures, Magnetic Properties and Thermal Stability of Cofeb/Mgo Films, Physics Procedia, Vol. 18, 2011, pp. 267-273, https://doi.org/10.1016/j.phpro.2011.06.093.
[2] D. Chen, E. H. Jordan, Synthesis of Porous, High Surface Area Mgo Microspheres, Materials Letters, Vol. 63, 2009, pp. 783-785, https://doi.org/10.1016/j.matlet.2009.01.014.
[3] R. Kumar, A. Subramania, N. T. K. Sundaram, G. V. Kumarb, I. Baskaran, Effect of MgO Nanoparticles on Ionic Conductivity and Electrochemical Properties of Nanocomposite Polymer Electrolyte, Journal of Membrane Science, Vol. 300, 2007, pp. 104-110, https://doi.org/10.1016/j.memsci.2007.05.014.
[4] C. Y. Choua, Y. D. Yaob, P. C. Kuoa, K. W. Chengb, C. Yub, S. C. Chen, Microstructure and Magnetoresistance of MgO Thin Film with Cofeb and CofeC Underlayers, Journal of Magnetism and Magnetic Materials, Vol. 310, 2007, pp. 2245-2247, https://doi.org/10.1016/j.jmmm.2006.10.825.
[5] J. L. Rodrıguez, C. Baudın, P. Pena, Relationships between Phase Constitution and Mechanical Behaviour in MgO-CaZrO3–Calcium Silicate Materials, Ournal of the European Ceramic Society, Vol. 24, No. 4, 2004,
pp. 669-679.
[6] Z. Wu, R. M. Wentzcovitch, K. Umemoto, B. Li, K. Hirose, J. C. Zheng, Pressure-Volume-Temperature Relations in MgO: An Ultrahigh Pressure-Temperature Scale for Planetary Sciences Applications, Journal of Geophysical Research, Vol. 113, 2008, pp. 1-12, https://doi.org/10.1029/2007JB005275.
[7] P. Tangney, S. Scandolo, Melting Slope of MgO from Molecular Dynamics and Density Functional Theory, The Journal of Chemical Physics, Vol. 131, No.12, 2009, pp. 1-6, https://doi.org/10.1063/1.3238548.
[8] T. Kondo, E. Ohtani, N. Hirao, T.Yagi, T. Kikegawa, Phase Transitions of (Mg, Fe)O at Megabar Pressures, Physics of The Earth and Planetary Interiors, Vol. 143-144, 2004, pp. 201-213, https://doi.org/10.1016/S0031-9201(04)00055-X.
[9] C. S. Valle, J. D. Bass, Elasticity and Pressure-Induced Structural Changes in Vitreous MgSiO3-Enstatite to Lower Mantle Pressures, Earth and Planetary Science Letters, Vol. 295, No. 3-4, 2010, pp. 523-530, https://doi.org/10.1016/j.epsl.2010.04.034.
[10] F. J. Spera, M. S. Ghiorso, D. Nevins, Structure, Thermodynamic and Transport Properties of Liquid MgSiO3: Comparison of Molecular Models and Laboratory Results, Geochimica et Cosmochimica Acta, Vol. 75, No. 5, 2011, pp. 1272-1296, https://doi.org/10.1016/j.gca.2010.12.004.
[11] N. P. D. Koker, L. Stixrude, B. B. Karki, Thermodynamics, Structure, Dynamics, and Freezing of Mg2SiO4 Liquid at High Pressure, Geochimica et Cosmochimica Acta, Vol. 72, No. 5, 2008, pp. 1427-1441,
https://doi.org/10.1016/j.gca.2007.12.019.
[12] S. S. Banerjee, S. Tarafder, N. M. Davies, A. Bandyopadhyay, S. Bose, Understanding The Influence of MgO and SrO Binary Doping on The Mechanical and Biological Properties of b-TCP Ceramics, Acta Biomaterialia, Vol. 6, 2010, pp. 4167-4174, https://doi.org/10.1016/j.actbio.2010.05.012.
[13] D. Pereira, S. Cachinho, M.C. Ferro, M. H. V. Fernandes, Surface Behaviour of High MgO-Containing Glasses of The Si-Ca-P-Mg System in a Synthetic Physiological Fluid, Journal of the European Ceramic Society, Vol. 24, No 15-16, 2004, pp. 3693-3701, https://doi.org/10.1016/j.jeurceramsoc.2004.02.006.
[14] N. V. Hong, M. T. Lan, P. K. Hung, Structure and Dynamics of Liquid MgO under High Pressure, High Pressure Research, 2012, pp. 1-15, http://dx.doi.org/10.1080/08957959.2012.736506.
[15] B. B. Karki, D. Bhattarai, L. Stixrude, First-Principles Calculations of The Structural, Dynamical, and Electronic Properties of Liquid MgO, Physical Review B, Vol. 73, 2006, pp. 1-7, https://doi.org/10.1103/PhysRevB.73.174208.
[16] A. Aguado, P. A. Madden, New Insights into The Melting Behavior of MgO from Molecular Dynamics Simulations: The Importance of Premelting Effects, Physical Review Letters, Vol. 94, 2005, pp. 68501-68504, https://doi.org/10.1103/physrevlett.94.068501.
[17] P. F. McMillan, M. C. Wilding, High Pressure Effects on Liquid Viscosity and Glass Transition Behaviour, Polyamorphic Phase Transitions and Structural Properties of Glasses and Liquids, ournal of Non-Crystalline Solids, Vol. 355, No. 10, 2009, pp. 722-732, http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.036.
[18] B. Karki, D. Bhattarai, L. Stixrude, First-Principles Simulations of Liquid Silica: Structural and Dynamical Behavior at High Pressure, Physical review B, Vol. 76, No. 10, 2007, pp. 1-7, http://dx.doi.org/10.1103/PhysRevB.76.104205.
[19] B. B. Karki, B. Bohara, L. Stixrude, First-Principles Study of Diffusion and Viscosity of Anorthite (CaAl2Si2O8) Liquid at High Pressure, American Mineralogist, Vol. 96, No. 5-6, 2011, pp. 744-751, http://dx.doi.org/10.2138/am.2011.3646.
[20] X. Sun, Q. F. Chen, Y. Chu, C. Wang, Properties of MgO at High Pressures: Shell-Model Molecular Dynamics Simulation, Physica B Condensed Matter, Vol. 370, No. 1-4, 2005, pp. 186-194, http://dx.doi.org/10.1016/j.physb.2005.09.011.
[21] A. B. Belonoshko, S. Arapan, R. Martonak, A. Rosengren, MgO Phase Diagram from First Principles in a Wide Pressure-Temperature Range, Physical Review B, Vol. 81, No. 5, 2010, pp. 1-9, http://dx.doi.org/10.1103/PhysRevB.81.054110.
[22] P. Tangney, S. Scandolo, Melting Slope of MgO from Molecular Dynamics and Density Functional Theory, The Journal of Chemical Physics, Vol. 131, No.12, 2009, pp. 124510, http://dx.doi.org/10.1063/1.3238548.
[23] S. Kohara, K. Suzuya, K. Takeuchi, C. K. Loong, M. Grimsditch, J. K. R. Weber, J. A. Tangeman, T. S. Key, Glass Formation at The Limit of Insufficient Network Formers, Science, Vol. 303, No. 5664, 2004, pp. 1649-1652, https://doi.org/10.1126/science.1095047.