Tran Thu Trang

Main Article Content

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for identifying molecular species, but it has been primarily limited to noble metal supports. The use of semiconductor materials as SERS surfaces has been attempted and has generally proven less effective than metal materials. It is known due to semiconductor materials' less efficient surface plasmon resonance (SPR) effect mechanism. This study clarified the SERS mechanism based on semiconductor material - ZnO microtube in probing methylene blue (MB) as an equal contribution of charge transfer and SPR mechanisms. Using Herzberg-Teller-surface selection rules, the charge transfer contribution in the SERS mechanism was estimated at approximately 50%. The limit of detection of ZnO microtube was achieved at 10-7 M, and the best enhancement factor was of 6.1×105.


 

Keywords: SERS mechanisms, charge transfer contribution, ZnO microtube.

References

[1] S. Pang, T. Yang, L. He, Review of Surface Enhanced Raman Spectroscopic (SERS) Detection of Synthetic Chemical Pesticides, TrAC Trends in Analytical Chemistry, Vol. 85, 2016, pp. 73-82, https//doi.org/10.1016/j.trac.2016.06.017.
[2] I. Alessandri, J. R. Lombardi, Enhanced Raman Scattering with Dielectrics, Chem Rev, Vol. 116, No. 24, 2016,
pp. 14921-14981, https//doi.org/10.1021/acs.chemrev.6b00365.
[3] H. Xu, J. Aizpurua, M. Käll, P. Apell, Electromagnetic Contributions to Single-molecule Sensitivity in Surface-Enhanced Raman Scattering, Physical Review E, Vol. 62, No. 3, 2000, pp. 4318.
[4] B. N. Persson, K. Zhao, Z. Zhang, Chemical Contribution to Surface-Enhanced Raman Scattering, Phys Rev Lett, Vol. 96, No. 20, 2006, pp. 207401, https//doi.org/10.1103/PhysRevLett.96.207401.
[5] R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, L. Fabris, A Review on Surface-Enhanced Raman Scattering, Biosensors (Basel), Vol. 9, No. 2, 2019, https//doi.org/10.3390/bios9020057.
[6] W. Ji, B. Zhao, Y. Ozaki, Semiconductor Materials in Analytical Applications of Surface‐enhanced Raman Scattering, Journal of Raman Spectroscopy, Vol. 47, No. 1, 2016, pp. 51-58.
[7] H. D. Aghdam, S. M. Bellah, R. Malekfar, Surface-Enhanced Raman Scattering Studies of Cu/Cu2O Core-Shell NPs Obtained by Laser Ablation, Spectrochim Acta A Mol Biomol Spectrosc, Vol. 223, 2019, pp. 117379, https//doi.org/1016/j.saa.2019.117379.
[8] S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng, Zhao, Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies, Nat Commun, Vol. 6, 2015, pp. 7800, https//doi.org/10.1038/ncomms8800.
[9] L. G. Quagliano, Observation of Molecules Adsorbed on III-V Semiconductor Quantum Dots by Surface-Enhanced Raman Scattering, Journal of the American Chemical Society, Vol. 126, No. 23, 2004, pp. 7393-7398,
[10] W. Li, R. Zamani, P. R.Gill, B. Pelaz, M. Ibanez, D. Cadavid, A. Shavel, R. A. Puebla, W. J. Parak, J. Arbiol,
A. Cabot, CuTe Nanocrystals: Shape and Size Control, Plasmonic Properties, and Use as SERS Probes and Photothermal Agents, Journal of the American Chemical Society, Vol. 135, No. 19, 2013, pp. 7098-7101.
[11] A. Musumeci, D. Gostola, T. Schiler, N. M. Dimitrijevic, V. Mujica, D. Martin, T. Rajh, SERS of Semiconducting Nanoparticles (TiO2 Hybrid Composites), Journal of the American Chemical Society, Vol. 131, No. 17, 2009,
pp. 6040-6041.
[12] T. T. H. Pham, X. H. Vu, T. T. Trang, N. X. Ca, N. D. Dien, P. V. Hai, N.T.H. Lien, N. T. Nghia, N. T. K. Chi, Enhance Raman Scattering for Probe Methylene Blue Molecules Adsorbed on ZnO Microstructures Due to Charge Transfer Processes, Optical Materials, Vol. 120, 2021, https//doi.org/10.1016/j.optmat.2021.111460.
[13] S. D. Roy, M. Ghosh, J. Chowdhury, Adsorptive Parameters and Influence of Hot Geometries on the SER(R) Spectra of Methylene Blue Molecules Adsorbed on Gold Nanocolloidal Particles, Journal of Raman Spectroscopy, Vol. 46, No. 5, 2015, pp. 451-461, https//doi.org/10.1002/jrs.4675.
[14] N. D. Dien, Preparation of Various Morphologies of ZnO Nanostructure through Wet Chemical Methods, Advanced Material Science, Vol. 4, No. 1, 2019, https//doi.org/10.15761/ams.1000147.
[15] L. Zhu, Y. Li, W. Zeng, Hydrothermal Synthesis of Hierarchical Flower-Like ZnO Nanostructure and Its Enhanced Ethanol Gas-Sensing Properties, Applied Surface Science, Vol. 427, 2018, pp. 281-287.
[16] V. Russo, M. Ghidelli, P. Gondoni, C. S. Casari, A. L. Bassi, Multi-Wavelength Raman Scattering of Nanostructured Al-Doped Zinc Oxide, Journal of Applied Physics, Vol. 115, No. 7, 2014, pp. 073508, https//doi.org/10.1063/1.4866322.
[17] R. F. Zhuo, H. T. Feng, Q. Liang, J. Z. Liu, J. T. Chen, D. Yan, J. J. Feng, H. J. Li, S. Cheng, B. S. Geng, X. Y. Xu, J. Wang, Z. G. Wu, P. X. Yan, G. H. Yue, Morphology-Controlled Synthesis, Growth Mechanism, Optical and Microwave Absorption Properties of ZnO Nanocombs, Journal of Physics D: Applied Physics, Vol. 41, No. 18, 2008, pp. 185405, https//doi.org/10.1088/0022-3727/41/18/185405.
[18] A. H. N. Melo, M. A. Macêdo, Permanent Data Storage in ZnO Thin Films by Filamentary Resistive Switching, PLoS One, Vol. 11, No. 12, 2016, pp. e0168515,
[19] C. Li, Y. Huang, K. Lai, B. A. Rasco, Y. Fan, Analysis of Trace Methylene Blue in Fish Muscles Using Ultra-Sensitive Surface-Enhanced Raman Spectroscopy, Food Control, Vol. 65, 2016, pp. 99-105, https//doi.org/10.1016/j.foodcont.2016.01.017.
[20] Z. Mao, W. Song, L. Chen, W. Ji, X. Xue, W. Ruan, Z. Li, H. Mao, S. Ma, J. R. Lombardi, B. Zhao, Metal–Semiconductor Contacts Induce the Charge-Transfer Mechanism of Surface-Enhanced Raman Scattering, The Journal of Physical Chemistry C, Vol. 115, No. 37, 2011,vpp. 18378-18383, https//doi.org/10.1021/jp206455a.
[21] L. Chen, H. Sun, Y. Zhao, Y. Zhang, Y. Wang, Y. Liu, X. Zhang, Y. Jiang, Z. Hua, J. Yang, Plasmonic-Induced SERS Enhancement of Shell-Dependent Ag@Cu2O Core–Shell Nanoparticles, RSC Advances, Vol. 7, No. 27, 2017, pp. 16553-16560, https//doi.org/0.1039/c7ra01187c.
[22] L. Jensen, C. M. Aikens, G. C. Schatz, Electronic Structure Methods for Studying Surface-Enhanced Raman Scattering, Chem Soc Rev, Vol. 37, No. 5, 2008, pp. 1061-1073, https//doi.org/10.1039/b706023h.
[23] K. Kneipp, Chemical Contribution to SERS Enhancement: an Experimental Study on a Series of Polymethine Dyes on Silver Nanoaggregates, The Journal of Physical Chemistry C, Vol. 120, No. 37, 2016, pp. 21076-21081.
[24] J. R. Lombardi, R. L. Birke, A Unified Approach to Surface-Enhanced Raman Spectroscopy, The Journal of Physical Chemistry C, Vol. 112, No. 14, 2008, pp. 5605-5617.
[25] A. P. Richter, J. R. Lombardi, B. Zhao, Size and Wavelength Dependence of the Charge-Transfer Contributions to Surface-Enhanced Raman Spectroscopy in Ag/PATP/ZnO Junctions, The Journal of Physical Chemistry C,
Vol. 114, No. 3, 2010, pp. 1610-1614.
[26] J. R. Lombardi, R. L. Birke, A Unified View of Surface-Enhanced Raman Scattering, Accounts of Chemical Research, Vol. 42, No. 6, 2009, pp. 734-742.
[27] T. T. Tran, X. H. Vu, P. T. T. Ha, T. N. Nguyen, D. D. Nguyen, Study of Charge Transfer Contribution to Surface-Enhanced Raman Scattering Activity of Cu\(_2\)O Nano-Octahedral Substrate, Communications in Physics, Vol. 32, No. 4, 2022, https//doi.org/10.15625/0868-3166/16787.
[28] L. Chen, Y. Zhao, Y. Zhang, M. Liu, Y. Wang, X. Qu, Y. Liu, J. Li, X. Liu, J. Yang, Design of Cu 2 O-Au Composite Microstructures for Surface-Enhanced Raman Scattering Study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 507, 2016, pp. 96-102, https//doi.org/10.1016/j.colsurfa.2016.07.053.
[29] T. T. Tran, X. H. Vu, T. L. Ngo, T. T. H. Pham, D. D. Nguyen, V. D. Nguyen, Enhanced Raman Scattering Based on a ZnO/Ag Nanostructured Substrate: an In-Depth Study of the SERS Mechanism, Phys Chem Chem Phys, Jun 1, 2023, https//doi.org/10.1039/d2cp05732h.
[30] T. N. Viet, Preparation of ZnO Nanoflowers for Surface Enhance Raman Scattering Applications, VNU Journal of Science: Mathematics - Physics, Vol. 36, No. 1, 2020, https//doi.org/10.25073/2588-1124/vnumap.4369.
[31] V. T. Tran, T. H. Tran, M. P. Le, N. H. Pham, V. T. Nguyen, D. B. Do, X. T. Nguyen, B. N. Q. Trinh, T. T. V. Nguyen, V. T. Pham, M. Q. Luy, A. B. Ngac, Highly Efficient Photo-Induced Surface Enhanced Raman Spectroscopy from ZnO/Au Nanorods, Optical Materials, Vol. 134, 2022, https//doi.org/10.1016/j.optmat.2022.113069.
[32] Q. K. Doan, M. H. Nguyen, C. D. Sai, V. T. Pham, H. H. Mai, N. H. Pham, T. C. Bach, V. T. Nguyen, T. T. Nguyen, K. H. Ho, T. H. Tran, Enhanced Optical Properties of ZnO Nanorods Decorated with Gold Nanoparticles for Self Cleaning Surface Enhanced Raman Applications, Applied Surface Science, Vol. 505, 2020, https//doi.org/10.1016/j.apsusc.2019.144593.
[33] S. Kundu, W. Dai, Y. Chen, L. Ma, Y. Yue, A. M. Sinyukov, H. Liang, Shape-Selective Catalysis and Surface Enhanced Raman Scattering Studies Using Ag Nanocubes, Nanospheres and Aggregated Anisotropic Nanostructures, Journal of Colloid and Interface Science, Vol. 498, 2017, pp. 248-262.