Comparing the Luminescence and Moisture Resistance of K3AlF6:Mn4+ Phosphor to Commercial Phosphors
Main Article Content
Abstract
Nowadays, red-emitting phosphors based on Mn4+ doped fluorides with a high color purity and a relatively short decay time can improve the optical performance of WLED. However, they are easily oxidized in humid environment and elevated temperatures. This is the reason why both the brightness and luminous efficiency of WLED quikly decreased. To solve this problem, KF was added throughout the K3AlF6:Mn4+ phosphor synthesis process (KKAFM). This work is focused on aging evaluation of the phosphors and comparing its performance with commercial phosphors (YAG:Ce3+, Sr2Si5N8:Eu2+). Thus, EL spectra of blue LED chips coated with the phosphors were investigated over time in an environment of 85 % RH and 85 oC. The results of EL spectra showed the improvement in the the reduction of the emission intensity of KKAFM. Aging tests of WLEDs using KKAFM and Sr2Si5N8:Eu2+ indicated that KKAFM phosphors exhibited a good stability, thus they can be used as a potential replacement for commercial red-emitting phosphors in WLEDs fabrication.
References
[2] H. D. Nguyen, R. S. Liu, Narrow-band Red-emitting Mn4+-doped Hexafluoride Phosphors: Synthesis, Optoelectronic Properties, and Applications in White Light-Emitting Diodes, J. Mater. Chem. C, Vol. 4, No. 46, 2016, pp. 10759-10775, https://doi.org/10.1039/C6TC03292C.
[3] H. F. Sijbom, R. Verstraete, J. J. Joos, D. Poelman, P. F. Smet, K2SiF6:Mn4+ as a Red Phosphor for Displays and Warm-White Leds: A Review of Properties And Perspectives, Opt. Mater. Express, Vol. 7, No. 9, 2017,
pp. 3332-3365, https://doi.org/10.1364/OME.7.003332.
[4] Q. Zhou, L. Dolgov, A. M. Srivastava, L. Zhou, Z. Wang, J. Shi, M. D. Dramićanin, M. G. Brik, M. Wu, Mn2+ and Mn4+ Red Phosphors: Synthesis, Luminescence and Applications in WLEDs. A Review, J. Mater. Chem. C,
Vol. 6, No. 11, 2018, pp. 2652-2671, https://doi.org/10.1039/C8TC00251G.
[5] Q. Z. Dong, C. J. Guo, L. He, X. F. Lu, J. B. Yin, Improving the Moisture Resistance and Luminescent Properties of K2TiF6:Mn4+ by Coating with CaF2, Mater. Res. Bull., Vol. 115, 2019, pp. 98-104, https://doi.org/10.1016/j.materresbull.2019.03.020.
[6] D. C. Huang, H. M. Zhu, Z. H. Deng, Q. L. Zou, H. Y. Lu, X. D. Yi, W. Guo, C. Z. Lu, X. Y. Chen, Moisture-Resistant Mn4+-doped Core-shell-Structured Fluoride Red Phosphor Exhibiting High Luminous Efficacy for Warm White Light-emitting Diodes, Angew. Chem. Int. Ed., Vol. 58, 2019, pp. 3843-3847, https://doi.org/10.1002/anie.201813363.
[7] O. M. T. Kate, Y. J. Zhao, K. M. B. Jansen, J. R. V. Ommen, H. T. Hintzen, Effects of Surface Modification on Optical Properties and Thermal Stability of K2SiF6:Mn4+ Red Phosphors by Deposition of An Ultrathin Al2O3 Layer Using Gas-Phase Deposition in A Fluidized Bed Reactor, ECS J. Solid State Sci. Technol., Vol. 8, 2019,
pp. R88-R96, https://doi.org/10.1149/2.0281906jss.
[8] T. C. Lang, T. Han, S. Q. Fang, J. Y. Wang, S. X. Cao, L. L. Peng, B. T. Liu, V. I. Korepanov, A. N. Yakovlev, Improved Phase Stability of the Metastable K2GeF6:Mn4+ Phosphors with High Thermal Stability and Water-Proof Property by Cation Substitution, Chem. Eng. J., Vol. 380, 2020, pp. 122429 (1-7), https://doi.org/10.1016/j.cej.2019.122429.
[9] V. Danielik, J. Gabčová, Phase Diagram of the System NaF-KF-AlF3. J. Therm. Anal. Cal., Vol. 76, 2004,
pp. 763-773, https://doi.org/10.1023/B:JTAN.0000032261.54207.1e.
[10] H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. D. Eeckhout, D. Poelman, P. F. Smet, Luminescent Behavior of the K2SiF6:Mn4+ Red Phosphor at High Fluxes and at the Microscopic Level, ECS Solid State Sci. Technol.,
Vol. 5, No. 1, 2016, pp. R3040-R3048, https://doi.org/10.1149/2.0051601jss.
[11] S. D. Kirik, Y. N. Zaitseva, D. Y. Leshok, A. S. Samoilo, P. S. Dubinin, I. S. Yakimov, D. A. Simakov, A. O. Gusev, NaF–KF–AlF3 System: Phase Transition in K2NaAl3F12 Ternary Fluoride, Inorg. Chem., Vol. 54, No. 12, 2015, pp. 5960-5969, https://doi.org/10.1021/acs.inorgchem.5b00772.
[12] E. Song, J. Wang, J. Shi, T. Deng, S. Ye, M. Peng, J. Wang, L. Wondraczek, Q. Zhang, Highly Efficient and Thermally Stable K3AlF6:Mn4+ as a Red Phosphor for Ultra-High-Performance Warm White Light-Emitting Diodes, ACS Appl. Mater. Interfaces, Vol. 9, No. 10, 2017, pp. 8805-8812, https://doi.org/10.1021/acsami.7b00749.
[13] Y. Liu, T. Wang, X. Zhang, C. Cao, L. Yang, Y. Huang, S. Liao, H. Zhang, Synthesis, Luminescence Properties and Nephelauxetic Effect of Nano Stick Phosphors K3AlF6:Mn4+ for Warm White LED, J Mater Sci: Mater Electron, Vol. 30, 2019, pp. 1870-1877, https://doi.org/10.1007/s10854-018-0459-1.
[14] L. Q. Dat, N. T. Lan, N. T. K. Lien, N. V. Quang, C. V. Anh, N. H. Tinh, N. T. Duyen, V. T. K. Thoa, N. T. Hanh, P. T. L. Huong, N. Tu, D. H. Nguyen, Excellent Hydrophobic Property of K3AlF6:Mn4+ Phosphor by Coating with Reduction Graphene Oxide on the Surface of Materials, Opt. Mater., Vol. 129, 2022, pp. 112552, https://doi.org/10.1016/j.optmat.2022.112552.
[15] D. Peng, S. He, Y. Zhang, L. Yao, W. Nie, Z. Liao, W. Cai, X. Ye, Blue Light-Induced Rare-Earth Free Phosphors for the Highly Sensitive and Selective Imaging of Latent Fingerprints Based on Enhanced Hydrophobic Interaction. J. Mater., Vol. 8, No. 1, 2022, pp. 229-238, https://doi.org/10.1016/j.jmat.2021.03.005.
[16] H. Ming, J. Zhang, L. Liu, J. Peng, F. Du, X. Ye, Luminescent Properties of a Cs3AlF6:Mn4+ Red Phosphor for Warm White Light-Emitting Diodes, ECS J. Solid State Sci. Technol., Vol. 7, 2018, pp. R149-R155. https://doi.org/10.1149/2.064202jes.
[17] F. A. Kröger, H. J. Vink, Relations Between the Concentrations of Imperfections in Crystalline Solids, Solid State Phys., Vol. 3, 1956, pp. 307-435, https://doi.org/10.1016/S0081-1947(08)60135-6.
[18] D. H. Nguyen, V. L. Pham, V. H. Tran, T. K. L. Nguyen, V. T. Pham, T. K. Pham, X. V. Dao, T. Nguyen, T. H. Pham, Enhanced Quantum Efficiency and Moisture-Resistant Red-Emitting K3alf6: Mn4+ Phosphor for High Color Rendering Index WLED, Optical Materials, Vol. 145, 2023, pp. 114511, https://doi.org/10.1016/j.optmat.2023.114511.
[19] S. Agarwal, M. S. Haseman, A. Khamehchi, P. Saadatkia, D. J. Winarski, F. A. Selim, Physical and Optical Properties of Ce:YAG Nanophosphors and Transparent Ceramics and Observation of Novel Luminescence Phenomenon, Opt. Mater. Express, Vol. 7, 2017, pp. 1055-1065, https://doi.org/10.1364/ome.7.001055.
[20] H. L. Li, R. J. Xie, N. Hirosaki, Y. Yajima, Synthesis and Photoluminescence Properties of Sr2Si5N8:Eu2+ Red Phosphor by A Gas-Reduction and Nitridation Method, J. Electrochem. Soc., Vol. 155, 2008, pp. J378-J381, https://doi.org/10.1149/1.2999278.
[21] G. Meneghesso, M. Meneghini, E. Zanoni, Recent Results on the Degradation of White LEDs for Lighting, J. Phys. D: Appl. Phys., Vol. 43, 2010, pp. 354007 (1-11), https://doi.org/10.1177/1477153515603757.
[22] S. Hariyani, J. Brgoch, F. Garcia-Santamaria, S. P. Sista; J. E. Murphy, A. A. Setlur, from Lab to Lamp: Understanding Downconverter Degradation in LED Packages, J. Appl. Phys., Vol. 132, 2022, pp. 190901(1-14), https://doi.org/10.1063/5.0122735.
[23] M. A. Hoque, R. K. Bradley, J. Fan, X. Fan, Effects of Humidity and Phosphor on Silicone/Phosphor Composite in White Light Emitting Diode Package, J. Mater. Sci.: Mater. Elec., Vol. 30, 2019, pp. 20471-20478, https://doi.org/10.1007/s10854-019-02393-8.