Single Step Synthesis of Cu2ZnSnS4 by Microwave Combustion Method
Main Article Content
Abstract
We report a novel single step process to synthesize Cu2ZnSnS4 nanopowder. Our novel approach is based on combustion method assisted with microwave irradiation. The obtained results showed that the precursors can be quickly decomposed in the microwave field to form Cu2ZnSnS4 nanopowder. The effects of fuel and microwave power on structures and properties of the nanopowder were investigated thoroughly by Raman spectroscopy. This synthesis process is promising for large scale fabrication of light absorbing materials for photovoltaic devices because it is facile, low cost, non-vacuum, single step and time saving.
Keywords:
Microwave irradiation; combustion; Cu2ZnSnS4; light absorber; Raman.
References
[1] F. A. Jhuma, M. Z. Shaily, M. J. Rashid, Towards High-efficiency CZTS Solar Cell Through Buffer Layer Optimization, Mater Renew Sustain Energy, Vol. 8, 2019, pp. 1-7, https://doi.org/10.1007/s40243-019-0144-1.
[2] N. V. Tuyen, Effect of Temperature on Cu2ZnSnS4 Nanomaterial Synthesized by Hydrothermal Approach, VNU Journal of Science: Mathematics – Physics, Vol. 34, 2018, pp. 55-60,
https://doi.org/10.25073/2588-1124/vnumap.4280.
[3] X. Jin, C. Yuan, G. Jiang, W. Liu, C. Zhu, Pulsed Laser Deposition of Cu2ZnSnS4 Thin Films from Single Quaternary Sulfide Target Prepared by Combustion Method, Mater. Lett., Vol. 175, 2016, pp. 180-183, https://doi.org/10.1016/j.matlet.2016.04.046.
[4] A. S. Nazligul, M. Wang, K. L. Choy, Recent Development in Earth-abundant Kesterite Materials aAnd Their Applications, Sustainability, Vol. 12, 2020, pp. 5138(1)- 5138(19), https://doi.org/10.3390/su12125138.
[5] A. Sharmin, M. S. Bashar, M. Sultana, S. M. M. A. Mamun, Sputtered Single-phase Kesterite Cu2ZnSnS4 (CZTS) Thin Film for Photovoltaic Applications: Post Annealing Parameter Optimization and Property Analysis, AIP Advances, Vol. 10, 2020, pp. 015230, https://doi.org/10.1063/1.5129202.
[6] N. Khemiri, S. Chamekh, M. Kanzari, Properties of Thermally Evaporated CZTS Thin Films and Numerical Simulation of Earth Abundant and Non Toxic CZTS/Zn(S,O) Based Solar Cells, Solar Energy, Vol. 207, 2020,
pp. 496-502, https://doi.org/10.1016/j.solener.2020.06.114.
[7] X. Yu, A. Ren, F. Wang, C. Wang, J. Zhang, W. Wang, L. Wu, W. Li, G. Zeng, L. Feng, Synthesis and Characterization of CZTS Thin Films by Sol-gel Method Without Sulfurization, International Journal of Photoenergy, Vol. 2014, 2014, pp. 1-6, https://doi.org/10.1155/2014/861249.
[8] V. T. Nguyen, D. Nam, M. Gansukh, S. N. Park, S. J. Sung, D. H. Kim, J. K. Kang, C. D. Sai, T. H. Tran,
H. Cheong, Influence of Sulfate Residue on Cu2ZnSnS4 Thin Films Prepared by Direct Solution Method, Solar Energy Materials and Solar Cells, Vol. 136, 2015, pp. 113-119, https://doi.org/10.1016/j.solmat.2015.01.003.
[9] S. Engberg, J. Symonowicz, J. Schou, S. Canulescu, K. M. Ø. Jensen, Characterization of Cu2ZnSnS4 Particles Obtained by the Hot-Injection Method, ACS , Vol. 5, 2020, pp. 10501-10509, https://doi.org/10.1021/acsomega.0c00657.
[10] T. H. Tran, T. H. Pham, C. D. Sai, T. T. Nguyen, V. T. Nguyen, Study Phase Evolution of Hydrothermally Synthesized Cu2ZnSnS4 Nanocrystals Bby Raman Spectroscopy, Nano-Structures and Nano-Objects, Vol. 18, 2019, pp. 100273(1)- 100273(5), https://doi.org/10.1016/j.nanoso.2019.100273.
[11] T. H. Tran, T. H. Pham, C. D. Sai, T. T. Nguyen, V. T. Nguyen, Study Phase Evolution of Hydrothermally Synthesized Cu2ZnSnS4 Nanocrystals by Raman Spectroscopy, Nano-Structures and Nano-Objects, Vol. 18, 2019, pp. 8-11, https://doi.org/10.1016/j.nanoso.2019.100273.
[12] J. Jiang, L. Zhang, W. Wang, R. Hong, The role of sulphur in the sulfurization of CZTS layer prepared by DC magnetron sputtering from a single quaternary ceramic target, Ceramics International, Vol. 44, 2018, pp. 11597–11602, https://doi.org/10.1016/j.ceramint.2018.03.225.
[13] D. Payno, S. Kazim, M. Salado, S. Ahmad, Sulfurization temperature Effects on Crystallization and Performance of Superstrate CZTS Solar Cells, Solar Energy, Vol. 224, 2021, pp. 1136-1143, https://doi.org/10.1016/j.solener.2021.06.038.
[14] M. A. Olgar, A. Seyhan, A. O. Sarp, R. Zan, Impact of Sulfurization Parameters on Properties of CZTS Thin Films Grown Using Quaternary Target, Journal of Materials Science: Materials in Electronics, Vol. 3, 2020,
pp. 20620-20631, https://doi.org/10.1007/s10854-020-04582-2.
[15] Fianti, W. N. Amaliyah, A. R. K. Wardani, N. M. D. Putra, T. Sulistyaningsih, Sulhadi, P. Marwoto, Study of CZTS Morphology Grown by Immersion and Sulfurization, in: AIP Conference Proceedings, Vol. 2320, 2021,
pp. 030009(1)-030009(6), https://doi.org/10.1063/5.0037824.
[16] J. Just, C. M. S. Fella, D. L. Hecht, R. Frahm, S. Schorr, T. Unold, Secondary Phases and Their Influence on the Composition of the Kesterite Phase in CZTS and CZTSe Thin Films, Physical Chemistry Chemical Physics,
Vol. 18, 2016, pp. 15988-15994, https://doi.org/10.1039/c6cp00178e.
[17] S. M. Ramay, A. Mahmood, S. Atiq, A. N. Alhazaa, Study of Divalent Elements (Mg, Sr and Ba)-doped LaMnO3 Nano-manganites, Int. J. Mod. Phys. B, Vol. 30, 2016, pp. 1-9, https://doi.org/10.1142/S021797921650020X.
[18] A. Manikandan, J. J. Vijaya, C. Ragupathi, L. J. Kennedy, Optical Properties and Dye-Sensitized Solar Cell Applications of ZnO Nanostructures Prepared by Microwave Combustion Synthesis, J. Nanosci. Nanotechnol., Vol. 14, 2014, pp. 2584-2590, https://doi.org/10.1166/jnn.2014.8515.
[19] T. H. Tran, T. C. Bach, N. H. Pham, Q. H. Nguyen, C. D. Sai, H. N. Nguyen, V. T. Nguyen, T. T. Nguyen, K. H. Ho, Q. K. Doan, Phase Transition of LaMnO3 Nanoparticles Prepared By Microwave Assisted Combustion Method, Mater. Sci. Semicond. Process., Vol. 89, 2019, pp. 121-125, https://doi.org/10.1016/j.mssp.2018.09.002.
[20] X. Jin, J. Li, G. Chen, C. Xue, W. Liu, C. Zhu, Preparation of Cu2ZnSnS4-based Thin Film Solar Cells by a Combustion Method, Solar Energy Materials and Solar Cells, Vol. 146, 2016, pp. 16-24, https://doi.org/10.1016/j.solmat.2015.11.027.
[21] T. H. Tran, T. H. Phi, H. N. Nguyen, N. H. Pham, C. V. Nguyen, K. H. Ho, Q. K. Doan, V. Q. Le, T. T. Nguyen, V. T. Nguyen, Sr doped LaMnO3 Nanoparticles Prepared By Microwave Combustion Method: A Recyclable Visible Light Photocatalyst, Results Phys., Vol. 19, 2020, pp. 103417(1)-103417(6), https://doi.org/10.1016/j.rinp.2020.103417.
[22] T. H. Tran, T. T. A. Tang, N. H. Pham, T. C. Bach, C. D. Sai, Q. H. Nguyen, V. V. Le, H. N. Nguyen,
Q. K. Doan, T. T. Nguyen, V. B. Le, K. H. Ho, V. T. Nguyen, A Novel Approach for Fabricating LaMnO3 Thin Films Using Combined Microwave Combustion and Pulsed Electron Deposition Techniques, Journal of Chemistry, Vol. 2019, 2019, pp. 1-8, https://doi.org/10.1155/2019/3568185.
[23] X. Jin, L. J. Zhang, C. Y. Wu, Y. Zhang, G. S. Jiang, W. F. Liu, C. F. Zhu, A Novel Strategy for Preparation of Cu2(MII)(MIV)S4 Thin Films for Solar Cell: Sulfurization of Mixed Metal Oxides Precursor Synthesized by Combustion Method, Advanced Materials Research, Vol. 1142, 2017, pp. 93-97, https://doi.org/10.4028/www.scientific.net/amr.1142.93.
[2] N. V. Tuyen, Effect of Temperature on Cu2ZnSnS4 Nanomaterial Synthesized by Hydrothermal Approach, VNU Journal of Science: Mathematics – Physics, Vol. 34, 2018, pp. 55-60,
https://doi.org/10.25073/2588-1124/vnumap.4280.
[3] X. Jin, C. Yuan, G. Jiang, W. Liu, C. Zhu, Pulsed Laser Deposition of Cu2ZnSnS4 Thin Films from Single Quaternary Sulfide Target Prepared by Combustion Method, Mater. Lett., Vol. 175, 2016, pp. 180-183, https://doi.org/10.1016/j.matlet.2016.04.046.
[4] A. S. Nazligul, M. Wang, K. L. Choy, Recent Development in Earth-abundant Kesterite Materials aAnd Their Applications, Sustainability, Vol. 12, 2020, pp. 5138(1)- 5138(19), https://doi.org/10.3390/su12125138.
[5] A. Sharmin, M. S. Bashar, M. Sultana, S. M. M. A. Mamun, Sputtered Single-phase Kesterite Cu2ZnSnS4 (CZTS) Thin Film for Photovoltaic Applications: Post Annealing Parameter Optimization and Property Analysis, AIP Advances, Vol. 10, 2020, pp. 015230, https://doi.org/10.1063/1.5129202.
[6] N. Khemiri, S. Chamekh, M. Kanzari, Properties of Thermally Evaporated CZTS Thin Films and Numerical Simulation of Earth Abundant and Non Toxic CZTS/Zn(S,O) Based Solar Cells, Solar Energy, Vol. 207, 2020,
pp. 496-502, https://doi.org/10.1016/j.solener.2020.06.114.
[7] X. Yu, A. Ren, F. Wang, C. Wang, J. Zhang, W. Wang, L. Wu, W. Li, G. Zeng, L. Feng, Synthesis and Characterization of CZTS Thin Films by Sol-gel Method Without Sulfurization, International Journal of Photoenergy, Vol. 2014, 2014, pp. 1-6, https://doi.org/10.1155/2014/861249.
[8] V. T. Nguyen, D. Nam, M. Gansukh, S. N. Park, S. J. Sung, D. H. Kim, J. K. Kang, C. D. Sai, T. H. Tran,
H. Cheong, Influence of Sulfate Residue on Cu2ZnSnS4 Thin Films Prepared by Direct Solution Method, Solar Energy Materials and Solar Cells, Vol. 136, 2015, pp. 113-119, https://doi.org/10.1016/j.solmat.2015.01.003.
[9] S. Engberg, J. Symonowicz, J. Schou, S. Canulescu, K. M. Ø. Jensen, Characterization of Cu2ZnSnS4 Particles Obtained by the Hot-Injection Method, ACS , Vol. 5, 2020, pp. 10501-10509, https://doi.org/10.1021/acsomega.0c00657.
[10] T. H. Tran, T. H. Pham, C. D. Sai, T. T. Nguyen, V. T. Nguyen, Study Phase Evolution of Hydrothermally Synthesized Cu2ZnSnS4 Nanocrystals Bby Raman Spectroscopy, Nano-Structures and Nano-Objects, Vol. 18, 2019, pp. 100273(1)- 100273(5), https://doi.org/10.1016/j.nanoso.2019.100273.
[11] T. H. Tran, T. H. Pham, C. D. Sai, T. T. Nguyen, V. T. Nguyen, Study Phase Evolution of Hydrothermally Synthesized Cu2ZnSnS4 Nanocrystals by Raman Spectroscopy, Nano-Structures and Nano-Objects, Vol. 18, 2019, pp. 8-11, https://doi.org/10.1016/j.nanoso.2019.100273.
[12] J. Jiang, L. Zhang, W. Wang, R. Hong, The role of sulphur in the sulfurization of CZTS layer prepared by DC magnetron sputtering from a single quaternary ceramic target, Ceramics International, Vol. 44, 2018, pp. 11597–11602, https://doi.org/10.1016/j.ceramint.2018.03.225.
[13] D. Payno, S. Kazim, M. Salado, S. Ahmad, Sulfurization temperature Effects on Crystallization and Performance of Superstrate CZTS Solar Cells, Solar Energy, Vol. 224, 2021, pp. 1136-1143, https://doi.org/10.1016/j.solener.2021.06.038.
[14] M. A. Olgar, A. Seyhan, A. O. Sarp, R. Zan, Impact of Sulfurization Parameters on Properties of CZTS Thin Films Grown Using Quaternary Target, Journal of Materials Science: Materials in Electronics, Vol. 3, 2020,
pp. 20620-20631, https://doi.org/10.1007/s10854-020-04582-2.
[15] Fianti, W. N. Amaliyah, A. R. K. Wardani, N. M. D. Putra, T. Sulistyaningsih, Sulhadi, P. Marwoto, Study of CZTS Morphology Grown by Immersion and Sulfurization, in: AIP Conference Proceedings, Vol. 2320, 2021,
pp. 030009(1)-030009(6), https://doi.org/10.1063/5.0037824.
[16] J. Just, C. M. S. Fella, D. L. Hecht, R. Frahm, S. Schorr, T. Unold, Secondary Phases and Their Influence on the Composition of the Kesterite Phase in CZTS and CZTSe Thin Films, Physical Chemistry Chemical Physics,
Vol. 18, 2016, pp. 15988-15994, https://doi.org/10.1039/c6cp00178e.
[17] S. M. Ramay, A. Mahmood, S. Atiq, A. N. Alhazaa, Study of Divalent Elements (Mg, Sr and Ba)-doped LaMnO3 Nano-manganites, Int. J. Mod. Phys. B, Vol. 30, 2016, pp. 1-9, https://doi.org/10.1142/S021797921650020X.
[18] A. Manikandan, J. J. Vijaya, C. Ragupathi, L. J. Kennedy, Optical Properties and Dye-Sensitized Solar Cell Applications of ZnO Nanostructures Prepared by Microwave Combustion Synthesis, J. Nanosci. Nanotechnol., Vol. 14, 2014, pp. 2584-2590, https://doi.org/10.1166/jnn.2014.8515.
[19] T. H. Tran, T. C. Bach, N. H. Pham, Q. H. Nguyen, C. D. Sai, H. N. Nguyen, V. T. Nguyen, T. T. Nguyen, K. H. Ho, Q. K. Doan, Phase Transition of LaMnO3 Nanoparticles Prepared By Microwave Assisted Combustion Method, Mater. Sci. Semicond. Process., Vol. 89, 2019, pp. 121-125, https://doi.org/10.1016/j.mssp.2018.09.002.
[20] X. Jin, J. Li, G. Chen, C. Xue, W. Liu, C. Zhu, Preparation of Cu2ZnSnS4-based Thin Film Solar Cells by a Combustion Method, Solar Energy Materials and Solar Cells, Vol. 146, 2016, pp. 16-24, https://doi.org/10.1016/j.solmat.2015.11.027.
[21] T. H. Tran, T. H. Phi, H. N. Nguyen, N. H. Pham, C. V. Nguyen, K. H. Ho, Q. K. Doan, V. Q. Le, T. T. Nguyen, V. T. Nguyen, Sr doped LaMnO3 Nanoparticles Prepared By Microwave Combustion Method: A Recyclable Visible Light Photocatalyst, Results Phys., Vol. 19, 2020, pp. 103417(1)-103417(6), https://doi.org/10.1016/j.rinp.2020.103417.
[22] T. H. Tran, T. T. A. Tang, N. H. Pham, T. C. Bach, C. D. Sai, Q. H. Nguyen, V. V. Le, H. N. Nguyen,
Q. K. Doan, T. T. Nguyen, V. B. Le, K. H. Ho, V. T. Nguyen, A Novel Approach for Fabricating LaMnO3 Thin Films Using Combined Microwave Combustion and Pulsed Electron Deposition Techniques, Journal of Chemistry, Vol. 2019, 2019, pp. 1-8, https://doi.org/10.1155/2019/3568185.
[23] X. Jin, L. J. Zhang, C. Y. Wu, Y. Zhang, G. S. Jiang, W. F. Liu, C. F. Zhu, A Novel Strategy for Preparation of Cu2(MII)(MIV)S4 Thin Films for Solar Cell: Sulfurization of Mixed Metal Oxides Precursor Synthesized by Combustion Method, Advanced Materials Research, Vol. 1142, 2017, pp. 93-97, https://doi.org/10.4028/www.scientific.net/amr.1142.93.