Tran Thi Viet Nga, To Thanh Loan, Nguyen Van Quang

Main Article Content

Abstract

In this work, we synthesized and investigated the microwave absorption properties of SrFe12O19, SrFe12O19/rGO and SrFe12O19/SiO2 materials prepared by chemical method. The phase structure, surface morphology, magnetic properties, and electromagnetic wave absorption characteristics of the samples were studied and compared. The SEM images of SrFe12O19/rGO sample showed a good stability in the distribution and dispersion of SrFe12O19 nanoparticles on rGO sheets. For SrFe12O19/SiO2 composite samples, it is shown that SiO2 coating is enwrapped on the SrFe12O19 surface, forming SrFe12O19/SiO2 nanocomposites with core-shell structure. The average particle size was found in the range of 60 – 120 nm. The composite SrFe12O19/rGO sample exhibited a minimum reflection loss reached -56.21 dB at 18 GHz with EAB of 12 GHz with a thickness of 3.5 mm. One can suggest that composite SrFe12O19/rGO materials possessing a best performance in both reflectivity and bandwidth can be used in the field of microwave absorption.

Keywords: Microwave absorption properties, hexaferrite, rGO, SiO2.

References

[1] X. Huang, J. Zhang, Z. Liu, T. Sang, B. Song, H. Zhu, C. Wong, Facile Preparation and Microwave Absorption Properties of Porous Hollow BaFe12O19/CoFe2O4 Composite Microrods, J. Alloys Compd., Vol. 648, 2015,
pp. 1072-1075, https://doi.org/10.1016/j.jallcom.2015.07.073.
[2] S. Jiao, M. Wu, X. Yu, H. Hu, Z. Bai, P. Dai, T. Jiang, H. Bi, G. Li, RGO/BaFe12O19/Fe3O4 Nanocomposite as Microwave Absorbent with Lamellar Structures and Improved Polarization Interfaces, Mater. Res. Bull., Vol. 108, 2018, pp. 89-95, https://doi.org/10.1016/j.materresbull.2018.08.014.
[3] S. Kolev, T. Koutzarova, A. Yanev, C. Ghelev, I. Nedkov, Microwave Properties of Polymer Composites Containing Combinations of Micro- and Nano-sized Magnetic Fillers, J. Nanosci. Nanotechnol.,Vol. 8, 2008,
pp. 650-654, https://doi.org/10.1166/jnn.2008.B069.
[4] S. H. Hosseini, P. Zamani, Preparation of Thermal Infrared and Microwave Absorber Using SrTiO3/BaFe12O19/polyaniline Nanocomposites, J. Magn. Magn. Mater., Vol. 397, 2016, pp. 205-212, https://doi.org/10.1016/j.jmmm.2015.08.105.
[5] A. A. H. Hernández, G. A. Á. Romero, A. C. Ovando, Y. M. Tolentino, E. C. López, C. A. G. Vidal, M. E. P. Hernández, Optimization of Microwave-Solvothermal Synthesis of Fe3O4 Nanoparticles, Coating, Modification and Characterization, Mater. Chem. Phys., Vol. 205, 2018, pp. 113-119, https://doi.org/10.1016/j.matchemphys.2017.11.009.
[6] H. Yang, T. Ye, Y. Lin, M. Liu, Preparation and Microwave Absorption Property of Graphene/BaFe12O19 /CoFe2O4 Nanocomposite, Appl. Surf. Sci., Vol. 357, 2015, pp. 1289-1293, https://doi.org/10.1016/j.apsusc.2015.09.147.
[7] N. Li, H. L. Jiang, X. Wang, X. Wang, G. Xu, B. Zhang, L. Wang, R. S. Zhao, J. M. Lin, Recent Advances in Graphene-based Magnetic Composites for Magnetic Solid-phase Extraction, TrAC - Trends Anal. Chem., Vol. 102, 2018, pp. 60-74, https://doi.org/10.1016/j.trac.2018.01.009.
[8] J. Luo, P. Shen, W. Yao, C. Jiang, J. Xu, Synthesis, Characterization and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites, Nanoscale Res. Lett., Vol. 11, 2016,
pp. 1-14, https://doi.org/10.1186/s11671-016-1340-x.
[9] W. Chen, Q. Liu, X. Zhu, M. Fu, One-step in Situ Synthesis of Strontium Ferrites and Strontium Ferrites/graphene Composites as Microwave Absorbing Materials, RSC Adv., Vol. 7, 2017, pp. 40650-40657, https://doi.org/10.1039/c7ra05700h.
[10] S. Goel, A. Garg, R. K. Gupta, A. Dubey, N. E. Prasad, S. Tyagi, Development of RGO/BaFe12O19-based Composite Medium for Improved Microwave Absorption Applications, Appl. Phys. A Mater. Sci. Process.,
Vol. 126, 2020, pp. 1-11, https://doi.org/10.1007/s00339-020-03613-3.
[11] S. Jiao, M. Wu, X. Yu, H. Hu, Z. Bai, P. Dai, T. Jiang, H. Bi, G. Li, RGO/BaFe12O19/Fe3O4 Nanocomposite as Microwave Absorbent with Lamellar Structures and Improved Polarization Interfaces, Mater. Res. Bull., Vol. 108, 2018, pp. 89-95, https://doi.org/10.1016/j.materresbull.2018.08.014.
[12] Y. T. Ng, W. Kong, S. Appadu, I. Kong, Microwave Absorption Properties of Fe3O4-Graphene Nanohybrids, Solid State Phenom., Vol. 268 SSP, 2017, pp. 297-301, https://doi.org/10.4028/www.scientific.net/SSP.268.297.
[13] S. Mallesh, W. Jang, K. H. Kim, Facile Synthesis of Cube-like Fe3O4-Graphene Oxide Nanocomposites with Excellent Microwave Absorption Performance, Phys. Lett. Sect. A Gen. At. Solid State Phys., Vol. 389, 2021,
pp. 10042-10047, https://doi.org/10.1016/j.physleta.2020.127069.
[14] Y. Wang, Y. Huang, Q. Wang, Q. He, L. Chen, Preparation and Electromagnetic Properties of Polyaniline(polypyrrole)- BaFe12O19/Ni0.8Zn0.2Fe2O4 Ferrite Nanocomposites, Appl. Surf. Sci., Vol. 259, 2012,
pp. 486-493, https://doi.org/10.1016/j.apsusc.2012.07.072.
[15] Z. Durmus, H. Kavas, A. Durmus, B. Aktaş, Synthesis and Micro-structural Characterization of Graphene/strontium Hexaferrite (SrFe12O19) Nanocomposites, Mater. Chem. Phys., Vol. 163, 2015, pp. 439-445, https://doi.org/10.1016/j.matchemphys.2015.07.063.
[16] X. Zhu, X. Wang, K. Liu, H. Yuan, R. Boudaghi, M. N. Akhtar, Thickness Optimization towards Microwave Absorption Enhancement in Three-layer Absorber Based on SrFe12O19, SiO2@SrFe12O19 and MWCNTs@SrFe12O19 Nanocomposites, J. Alloys Compd., Vol. 873, 2021, pp. 1-11, https://doi.org/10.1016/j.jallcom.2021.159818.
[17] M. D. Dung, T. T. V. Nga, N. T. Lan, N. K. Thanh, Adsorption Behavior and Mechanism of As(V) on Magnetic Fe3O4–graphene Oxide (GO) Nanohybrid Composite Material, Anal. Sci., Vol. 38, 2022, pp. 427-436, https://doi.org/10.1007/s44211-022-00064-z.
[18] M. F. Elmahaishi, R. S. Azis, I. Ismail, F. D. Muhammad, A Review on Electromagnetic Microwave Absorption Properties: Their Materials and Performance, J. Mater. Res. Technol., Vol. 20, 2022, pp. 2188-2220, https://doi.org/10.1016/j.jmrt.2022.07.140.
[19] M. M. Baig, E. Pervaiz, M. Azad, Z. Jahan, M. B. K. Niazi, S. M. Baig, NiFe2O4/SiO2 Nanostructures as A Potential Electrode Material for High Rated Supercapacitors, Ceram. Int., Vol. 47, 2021, pp. 12557-12566, https://doi.org/10.1016/j.ceramint.2021.01.113.
[20] Z. H. Karahroudi, K. Hedayati, M. Goodarzi, Green Synthesis and Characterization of Hexaferrite Strontium-Perovskite Strontium Photocatalyst Nanocomposites, Main Gr. Met. Chem., Vol. 43, 2020, pp. 26-42, https://doi.org/10.1515/mgmc-2020-0004.
[21] F. Bavarsiha, M. Rajabi, M. M. Pour, Synthesis of SrFe12O19/SiO2/TiO2 Composites with Core/shell/shell Nano-structure and Evaluation of Their Photo-catalytic Efficiency for Degradation of Methylene Blue, J. Mater. Sci. Mater. Electron., Vol. 29, 2018, pp. 1877-1887, https://doi.org/10.1007/s10854-017-8098-5.
[22] K. Mohammadi, M. Sadeghi, R. Azimirad, Facile Synthesis of SrFe12O19 Nanoparticles and Its Photocatalyst Application, J. Mater. Sci. Mater. Electron., Vol. 28, 2017, pp. 10042-10047, https://doi.org/10.1007/s10854-017-6763-3.
[23] T. T. V. Nga, N. T. Lan, Fabrication and Exchange-spring Properties of SrFe12O19@Fe3O4 Nanocomposites with Core-shell Structure, Mater. Chem. Phys.,Vol. 251, 2020, https://doi.org/10.1016/j.matchemphys.2020.123084.
[24] T. T. V. Nga, N. V. Quang, T. T. Loan, Study on Microwave Absorption Performance of Submicron SrFe12O19 Particles Prepared by Hydrothermal Method, VNU Journal of Science: Mathematics – Physics, Vol. 40, No. 1, 2024, pp. 10-17, https://doi.org/10.25073/2588-1124/vnumap.4851.