Structural Properties of CuFe2O4/ZnO Nanocomposite: Insights from X-ray Diffraction and Extended X-ray Absorption Fine Structure
Main Article Content
Abstract
This work presents a comprehensive study of the structural properties of a CuFe2O4/ZnO nanocomposite, with a CuFe2O4/ZnO ratio of 1:1. CuFe2O4/ZnO nanocomposite was synthesized using a two-step co-precipitation method. First, CuFe2O4 nanoparticles were prepared using the spray co-precipitation technique, then the nanoparticles were modified by sodium citrate and coated with ZnO. The structural parameters of both the crystal and local structures of the CuFe2O4 constituent within the nanocomposite were obtained by using a combination of X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) analyses. The obtained results indicated that both the crystal and local structures of the CuFe2O4 constituent in the nanocomposite form are not affected by the ZnO coating. The CuFe2O4 constituent has a cubic spinel structure with 15% of Cu2+ ions distributed in the tetrahedral sites. Interatomic distances have been identified both as averages and specifically around Fe and Cu atoms to determine any sub-lattice distortion and the formation of distinct sub-lattices around Fe and Cu atoms in the cubic structure.
References
[2] S. Park, J. H. Baek, L. Zhang, J. M. Lee, K. H. Stone, I. S. Cho, J. Guo, H. S. Jung, X. Zheng, Rapid Flame-Annealed CuFe2O4 as Efficient Photocathode for Photoelectrochemical Hydrogen Production, ACS Sustainable Chemistry & Engineering, Vol. 7, 2019, pp. 5867-5874, https://doi.org/10.1021/acssuschemeng.8b05824.
[3] J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, X. Chen, CuFe2O4 Magnetic Nanoparticles: A Simple and Efficient Catalyst for the Reduction of Nitrophenol, Chemical Engineering Journal, Vol. 221, 2013, pp. 16-24, https://doi.org/10.1016/j.cej.2013.02.009.
[4] S. M. Fotukian, A. Barati, M. Soleymani, A. M. Alizadeh, Solvothermal Synthesis of CuFe2O4 and Fe3O4 Nanoparticles with High Heating Efficiency for Magnetic Hyperthermia Application, Journal of Alloys and Compounds, Vol. 816, 2020, pp. 152548, https://doi.org/10.1016/j.jallcom.2019.152548.
[5] C. Lu, Z. Bao, C. Qin, L. Dai, A. Zhu, Facile Fabrication of Heterostructured Cubic-CuFe2O4/ZnO Nanofibers (c-CFZs) with Enhanced Visible-light Photocatalytic Activity and Magnetic Separation, RSC Advances, Vol. 6, 2016, pp. 110155-110163, https://doi.org/10.1039/c6ra23970f.
[6] C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, CuFe2O4-Encapsulated ZnO Nanoplates: Magnetically Retrievable Biocidal Photocatalyst, Journal of Nanoscience and Nanotechnology, Vol. 17, No. 7, 2017,
pp. 4489-4497, https://doi.org/10.1166/jnn.2017.14190.
[7] K. Ali, J. Iqbal, T. Jan, I. Ahmad, D. Wan, A. Bahadur, S. Iqbal, Synthesis of CuFe2O4-ZnO Nanocomposites with Enhanced Electromagnetic Wave Absorption Properties, Journal of Alloys and Compounds, Vol. 705, 2017,
pp. 559-565, https://doi.org/10.1016/j.jallcom.2017.01.264.
[8] J. J. Rushmittha, S. Radhika, G. Maheshwaran, C. M. Padma, Tuning the Electrochemical Performance of Binary CuFe2O4 Incorporated by ZnO Nanoparticles for High Performance Hybrid Supercapacitors, Inorganic Chemistry Communications, Vol. 159, 2024, pp. 111728, https://doi.org/10.1016/j.inoche.2023.111728.
[9] A. S. Arreola, A. M. H. Flores, J. M. M. Hernández, L. M. T. Martínez, Improved Photocatalytic Activity for Water Splitting over MFe2O4–ZnO (M = Cu and Ni) Type-ll Heterostructures, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 364, 2018, pp. 433-442, https://doi.org/10.1016/j.jphotochem.2018.06.033.
[10] S. Paydar, N. Akbar, Q. Shi, Y. Wu, Developing Cuprospinel CuFe2O4–ZnO Semiconductor Heterostructure as a Proton Conducting Electrolyte for Advanced Fuel Cells, International Journal of Hydrogen Energy, Vol. 46,
Iss. 15, 2021, pp. 9927-9937, https://doi.org/10.1016/j.ijhydene.2020.04.198.
[11] M. Fedailaine, M. Trari, Photoreduction of Ni2+ under Solar and Artificial Reactors on The Hetero-junction (CuFe2O4/ZnO): Comparison between Experimental and Theoretical Results, Materials Today Communications, Vol. 31, 2022, pp. 103665, https://doi.org/10.1016/j.mtcomm.2022.103665.
[12] A. M. Balagurov, I. A. Bobrikov, M. S. Maschenko, D. Sangaa, V. G. Simkin, Structural Phase Transition in CuFe2O4 Spinel, Crystallography Reports, Vol. 58, 2013, pp. 710-717, https://doi.org/10.1134/S1063774513040044.
[13] N. K. Thanh, N. P. Duong, D. Q. Hung, T. T. Loan, T. D. Hien, Structural and Magnetic Characterization of Copper Ferrites Prepared by Using Spray Co-Precipitation Method, Journal of Nanoscience and Nanotechnology, Vol. 16, No. 8, 2016, pp. 7949-7954, https://doi.org/10.1166/jnn.2016.12750.
[14] L. N. Anh, T. T. Loan, N. K. Thanh, N. P. Duong, D. T. T. Nguyet, N. M. Hong, Structural and H2S Sensing Properties of Copper Ferrite Nanoparticles Prepared Through Hydrothermal Method, Journal of Nanoscience and Nanotechnology, Vol. 21, No. 4, 2021, pp. 2641-2646, https://doi.org/10.1166/jnn.2021.19095.
[15] N. K. Thanh, T. T. Loan, L. N. Anh, N. P. Duong, S. Soontaranon, N. Thammajak, T. D. Hien, Cation Distribution in CuFe2O4 Nanoparticles: Effects of Ni Doping on Magnetic Properties, Journal of Applied Physics, Vol. 120, 2016, pp. 142115, https://doi.org/10.1063/1.4961722.
[16] R. Khunphonoi, P. Khemthong, C. Luadthong, S. Kuboon, C. Kongmark, N. V. Empikul, P. Kidkhunthod,
S. Pinitsoontorn, K. Faungnawakij, Correlating The Effect of Preparation Methods on The Structural and Magnetic Properties, and Reducibility of CuFe2O4 Catalysts, RSC Advances, Vol. 12, 2022, pp. 15526-15533, https://doi.org/10.1039/d2ra01708c.
[17] T. F. Marinca, I. Chicinaş, O. Isnard, Synthesis, Structural and Magnetic Characterization of Nanocrystalline CuFe2O4 as Obtained by a Combined Method Reactive Milling, Heat Treatment and Ball Milling, Ceramics International, Vol. 38, Iss. 3, 2012, pp. 1951-1957, https://doi.org/10.1016/j.ceramint.2011.10.026.
[18] V. Krishnan, R. K. Selvan, C. O. Augustin, EXAFS and XANES Investigations of CuFe2O4 Nanoparticles and CuFe2O4 - MO2 ( M = Sn, Ce ) Nanocomposites, The Journal of Physical Chemistry C, Vol. 111, Iss. 45, 2007,
pp. 16724-16733, https://doi.org/10.1021/jp073746t.
[19] R. K. Selvan, V. Krishnan, C. O. Augustin, H. Bertagnolli, C .S. Kim, A. Gedanken, Investigations on the Structural, Morphological, Electrical, and Magnetic Properties of CuFe2O4-NiO Nanocomposites, Chemistry of Materials, Vol. 20, Iss. 2, 2008, pp. 429-439, https://doi.org/10.1021/cm701937q.
[20] F. Caddeo, D. Loche, M. F. Casula, A. Corrias, Evidence of A Cubic Iron Sub-lattice in t-CuFe2O4 Demonstrated by X-ray Absorption Fine Structure, Scientific Reports, Vol. 8, No. 797, 2018, https://doi.org/10.1038/s41598-017-19045-8.
[21] T. T. Loan, D. K. Huy, H. M. Chung, N. K. Thanh, T. D. Hoan, N. P. Duong, S. Soontaranon, W. Klysubun, Structure and Magnetic Properties of Magnetic Iron Oxide/Zinc Oxide Core/shell Nanocomposites: Effect of ZnO Coating, Materials Today Communications, Vol. 26, 2021, pp. 101733, https://doi.org/10.1016/j.mtcomm.2020.101733.
[22] D. Balzar, Voigt-Function Model in Diffraction Line-Broadening Analysis, Defects and Microstructure Analysis by Diffraction, International Union of Crystallography, Monograph on Crystallography, Oxford University Press, Oxford, UK, 1999, pp. 94-126.
[23] L. B. McCusker, R. B. V. Dreele, D. E. Cox, D. Louër, P. Scardi, Rietveld Refinement Guidelines, Journal of Applied Crystallography, Vol. 32, 1999, pp. 36-50, https://doi.org/10.1107/S0021889898009856.
[24] W. Klysubun, P. Sombunchoo, W. Deenan, C. Kongmark, Performance and Status of Beamline BL8 at SLRI for X-ray Absorption Spectroscopy, Journal of Synchrotron Radiation, Vol. 19, 2012, pp. 930-936, https://doi.org/10.1107/S0909049512040381.
[25] B. Ravel, M. Newville, Athena, Artemis, Hephaestus: Data Analysis for X-ray Absorption Spectroscopy using IFEFFIT, Journal of Synchrotron Radiation, Vol. 12, 2005, pp. 537-541, https://doi.org/10.1107/S0909049505012719.
[26] C. M. B. Henderson, J. M. Charnock, D. A. Plant, Cation Occupancies in Mg, Co, Ni, Zn, Al Ferrite Spinels: A Multi-element EXAFS Study, Journal of Physics: Condensed Matter, Vol. 19, 2007, pp. 076214, https://doi.org/10.1088/0953-8984/19/7/076214.