Structure and Density Heterogeneities of the l-3Al2O3.2SiO2 System: Insight from Computer Simulation and Density-Based Spatial Clustering of Applications with Noise
Main Article Content
Abstract
The structural and density heterogeneity of the liquid 3Al2O3.2SiO2 (l-3Al2O3.2SiO2) system was studied using Molecular Dynamics (MD) and Monte Carlo (MC) simulations. The results showed that the structural phase transition occurred at an oxygen packing factor of approximately 0.58. At low pressure, TO4 structural units predominated while at high pressure, TO6 structural units became dominant. In addition, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm was applied to find regions with larger density than the average density in the model. These findings provide an in-depth understanding of the structure of the l-3Al2O3.2SiO2 system under compressive pressure.
Keywords: Structural heterogeneity, OPF, high-density regions, DBSCAN.
References
https://doi.org/10.1111/j.1151-2916.1991.tb06768.x.
[2] S. Takahashi, D. R. Neuville, H. Takebe, Thermal Properties, Density and Structure of Percalcic and Peraluminus CaO–Al2O3–SiO2 Glasses, Journal of Non-Crystalline Solids, Vol. 411, 2015, pp. 5-12, https://doi.org/10.1016/j.jnoncrysol.2014.12.019.
[3] K. Junfeng, C. Junzhu, L. Sheng et al., Structure, Dielectric Property and Viscosity of Alkali-Free Boroaluminosilicate Glasses with the Substitution of Al2O3 for SiO2, Journal of Non-Crystalline Solids, Journal of Non-Crystalline Solids, Vol. 537, 2020, pp. 120022, https://doi.org/10.1016/j.jnoncrysol.2020.120022.
[4] S. H. Garofalini, Molecular Dynamics Simulations of Silicate Glasses and Glass Surfaces: Applications in the Geosciences, Rev. Mineral.Geochem, Vol. 42, 2011, pp. 131-168, http://dx.doi.org/10.1515/9781501508721-008.
[5] P. F. Becher, S. Hampshire, M. J. Pomeroy et al., An Overview of the Structure and Properties of Silicon-Based Oxynitride Glasses, International Journal of Applied Glass Science, Vol. 2, 2011, pp. 63-83, https://doi.org/10.1111/j.2041-1294.2011.00042.x.
[6] X. Lin, Z. Wang, X. Jiang at el., Effect of Al2O3/SiO2 Mass Ratio on the Structure and Properties of Medical Neutral Boroaluminosilicate Glass Based on XPS and Infrared Analysis, Ceramics International, Vol. 49, 2023, pp. 38499, https://doi.org/10.1016/j.ceramint.2023.09.180.
[7] C. Ji, L. Li, W. Gao, J. Wang, J. Han, Influence of Al2O3/SiO2 Ratio in Multicomponent LNAS Glasses and Glass-ceramics on the Crystallization Behavior, Microstructure and Mechanical Performance, Ceramics International, Vol. 49, 2023, pp. 10652, https://doi.org/10.1016/j.ceramint.2022.11.253.
[8] H. P. A. Alves, Processing of Mullite–Glass Ceramics Using Simplex-Centroid Design: Densification Process Dominated By Liquid-Phase Sintering, Boletín De La Sociedad Española De Cerámica y Vidrio, Vol. 61, 2022, pp. 160-168, https://doi.org/10.1016/j.bsecv.2020.09.002.
[9] M. Kriven, J. W. Palko, S. Sinogeikin, J. D. Bass, A. Sayir, G. Brunauer, H. Boysen, F. Freyd, J. Schneider, High Temperature Single Crystal Properties of Mullite, J. Eur. Ceram. Soc., Vol. 19, 1999, pp. 2529, https://doi.org/10.1016/S0955-2219(99)00124-7.
[10] S. Hartmut, Mullite: Crystal Structure and Related Properties, J. Am. Ceram. Soc., Vol. 98, 2015, pp. 2948, https://doi.org/10.1111/jace.13817.
[11] M. Daniele, S. Ronchetti, A. Costanzo, Atomistic Simulations on Mullite Al2(Al2+2xSi2−2x)O10−x in a Variable Range of Composition, J. Eur. Ceram. Soc, Vol. 28, 2008, pp. 367, https://doi.org/10.1016/j.jeurceramsoc.2007.03.003.
[12] M. Benoit, S. Ispas, Structural Properties of Molten Silicates from Ab Initio Molecular-Dynamics Simulations: Comparison between CaO-Al2O3-SiO2 and SiO2, Physical Review B, Vol. 64, 2001, pp. 224205, https://10.1103/PhysRevB.64.224205.
[13] A. Winkler, J. Horbach, W. Kob et al., Structure and Diffusion in Amorphous Aluminum Silicate: A Molecular Dynamics Computer Simulation, J Chem Phys, Vol. 120, 2004, pp. 384, https://doi.org/10.1063/1.1630562.
[14] N. V. Yen, M. T. Lan, L. T. Vinh, N. V. Hong, Structural Properties of Liquid Aluminosilicate with Varying Al2O3/ SiO2 Ratios: Insight From Analysis And Visualization of Molecular Dynamics Data, Modern Physics Letters B, Vol. 31, 2017, pp. 36, https://doi.org/10.1142/S0217984917500361.
[15] J. R. Allwardt, J. F. Stebbins, B. C. Schmidt et al., Aluminum Coordination and the Densification of High-Pressure Aluminosilicate Glasses, Am Mineralogist, Vol. 90, 2005, pp. 1218.
[16] M. T. Lan, T. Iitakay, N. V. Hong, International Journal of Modern Physics B Vol. 32, No. 24, 2018,
pp. 1850271, https://doi.org/10.1142/S0217979218502715.
[17] A. L. Pakdehi, N. Daneshpour, DBHC: A DBSCAN-based Hierarchical Clustering Algorithm, Data & Knowledge Engineering, Vol. 135, 2021, pp. 101922, https://doi.org/10.1016/j.datak.2021.101922.
[18] J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques, Elsevier, 2011.
[19] V. E. Sokol’skii, V. Pruttskov, O. M. Yakovenko, V. P. Kazimirov, O. S. Roik, N. V. Golovataya, G. V. Sokolsky, X-ray Diffraction Study of Structure of CaO-Al2O3-SiO2 Ternary Compounds in Molten and Crystalline States, J. Min. Metall. Sect. B-Metall., Vol. 56, 2020, pp. 269-277.
[20] M. Okuno, N. Zotov, M. Schmu¨cker, H. Schneider, Structure of SiO2–Al2O3 Glasses: Combined X-ray Diffraction, IR and Raman Studies, Journal of Non-Crystalline Solids, Vol. 351, 2005, pp. 1032-1038.
[21] Q. Huang, R. Gao, H. Akhavan, An Ensemble Hierarchical Clustering Algorithm Based on Merits at Cluster and Partition Levels, Pattern Recogn, Vol. 136, 2023, pp. 109255, https://doi.org/10.1016/j.patcog.2022.109255.
[22] J. H. Peng et al., Clustering Algorithms to Analyze Molecular Dynamics Simulation Trajectories for Complex Chemical and Biological Systems, Chinese J Chem Phys, Vol. 31, 2018, pp. 404-420, https://doi.org/10.1063/1674-0068/31/cjcp1806147.
[23] N. V. Hong, Structure and Density Heterogeneities of Silica Glass: Insight from Datamining Techniques, Silicon, 2024, https://doi.org/10.1007/s12633-024-03148-9.
[24] A. Fernández; S. Gómez, Solving Non-Uniqueness in Agglomerative Hierarchical Clustering Using Multidendrograms, Journal of Classification, Vol. 25, 2008, pp. 43-65, http://dx.doi.org/10.1007/s00357-008-9004-x.