The Cloud of Bose-Einstein Condensate in a harmonic trap
Main Article Content
Abstract
In this paper, we calculate the volume of a Bose-Einstein condensate (BEC) cloud confined within a harmonic trap induced by a magneto-optical trap. Three primary factors influencing the volume of the BEC cloud are examined: thermal motion, interatomic interactions, and the uncertainty in momentum and position. These considerations enable the definition of certain thermodynamic variables, leading to the establishment of the thermodynamic equations of state.
Keywords:
Bose-Einstein condensate;, harmonic trap;, thermodynamic volume;, thermodynamic pressure;, equations of state
References
[1] S. N. Bose, “Plancks Gesetz und Lichtquantenhypothese,” Zeitschrift fur Physik, vol. 26, no. 1, pp. 178–181, Dec. 1924, doi: https://doi.org/10.1007/bf01327326.
[2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science, vol. 269, no. 5221, pp. 198–201, Jul. 1995, doi: https://doi.org/10.1126/science.269.5221.198.
[3] A. Görlitz et al., “Realization of Bose-Einstein Condensates in Lower Dimensions,” Physical Review Letters, vol. 87, no. 13, Sep. 2001, doi: https://doi.org/10.1103/physrevlett.87.130402.
[4] M. R. Andrews, C. G. Townsend, H.-J. . Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of Interference Between Two Bose Condensates,” Science, vol. 275, no. 5300, pp. 637–641, Jan. 1997, doi: https://doi.org/10.1126/science.275.5300.637.
[5] I. Bloch, “Ultracold quantum gases in optical lattices,” Nature Physics, vol. 1, no. 1, pp. 23–30, Oct. 2005, doi: https://doi.org/10.1038/nphys138.
[6] K. Huang, Introduction to Statistical Physics. CRC Press, 2001.
[7] N. V. Thu and P. D. Thanh, “Phenomenological Analogy between Gross-Pitaevskii Theory for Bose-Einstein Condensate and Newton Equation for Classical Mechanics,” VNU Journal of Science: Mathematics and Physics, vol. 40, no. 2, pp. 100–105, 2024, doi: https://js.vnu.edu.vn/MaP/article/view/4922.
[8] C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, 2008.
[9] Nguyen Van Thu, “Non-condensate fraction of a weakly interacting Bose gas confined between two parallel plates within improved Hartree-Fock approximation at zero temperature,” Physics Letters A, vol. 486, pp. 129099–129099, Sep. 2023, doi: https://doi.org/10.1016/j.physleta.2023.129099.
[10] V. Romero-Rochin et al., “Observation of Bose-Einstein condensation in an atomic trap in terms of macroscopic thermodynamic parameters,” Physical Review A, vol. 85, pp. 0236321–0236325, 2012, doi: https://doi.org/10.1103/PhysRevA.85.023632.
[2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science, vol. 269, no. 5221, pp. 198–201, Jul. 1995, doi: https://doi.org/10.1126/science.269.5221.198.
[3] A. Görlitz et al., “Realization of Bose-Einstein Condensates in Lower Dimensions,” Physical Review Letters, vol. 87, no. 13, Sep. 2001, doi: https://doi.org/10.1103/physrevlett.87.130402.
[4] M. R. Andrews, C. G. Townsend, H.-J. . Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of Interference Between Two Bose Condensates,” Science, vol. 275, no. 5300, pp. 637–641, Jan. 1997, doi: https://doi.org/10.1126/science.275.5300.637.
[5] I. Bloch, “Ultracold quantum gases in optical lattices,” Nature Physics, vol. 1, no. 1, pp. 23–30, Oct. 2005, doi: https://doi.org/10.1038/nphys138.
[6] K. Huang, Introduction to Statistical Physics. CRC Press, 2001.
[7] N. V. Thu and P. D. Thanh, “Phenomenological Analogy between Gross-Pitaevskii Theory for Bose-Einstein Condensate and Newton Equation for Classical Mechanics,” VNU Journal of Science: Mathematics and Physics, vol. 40, no. 2, pp. 100–105, 2024, doi: https://js.vnu.edu.vn/MaP/article/view/4922.
[8] C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, 2008.
[9] Nguyen Van Thu, “Non-condensate fraction of a weakly interacting Bose gas confined between two parallel plates within improved Hartree-Fock approximation at zero temperature,” Physics Letters A, vol. 486, pp. 129099–129099, Sep. 2023, doi: https://doi.org/10.1016/j.physleta.2023.129099.
[10] V. Romero-Rochin et al., “Observation of Bose-Einstein condensation in an atomic trap in terms of macroscopic thermodynamic parameters,” Physical Review A, vol. 85, pp. 0236321–0236325, 2012, doi: https://doi.org/10.1103/PhysRevA.85.023632.