Pham Thi Nga, Pham Thi Thu Ha, Nguyen Dac Dien, Doan Thi Thao Anh, Tran Thu Trang, Nguyen Vu Anh Tuyet, Vuong Truong Xuan, Vu Xuan Hoa

Main Article Content

Abstract

In this work, Ag/Au bimetallic nanodecahedra was successfully synthesized using the reduction process and photochemical method. Polyvinylpyrrolidone was used as a shape-directing agent, AgNO3, HAuCl4 as precursor raw materials, sodium borohydride as a reducing agent for the growth of Ag metal. Ag+ ions were reduced to Ag nanoparticles (AgNPs) as seeds using sodium borohydride (NaBH4), and then Ag nanodecahedra (AgND) were prepared by a photochemical seeding growth method under the illumination of blue light emitting diode (BLED) with a wavelength of 480 nm. Next, an Au nanofilm was formed by chemical reduction on the surface of the Ag nanodecahedra from precursors of HAuCl4 and ascorbic acid (C6H8O6). At the same time, Ag was replaced by Au through a galvanic replacement reaction. As-prepared products have been characterized by X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectroscopy (EDS), EDX mapping, and ultraviolet-visible (UV-Vis) absorption spectroscopy. The intensity and position of UV-Vis peaks of AgND and Ag/Au changed as BLED illumination time and HAuCl4 amount changed.


Keywords: Au/Ag bimetallic, galvanic replacement reaction, nanodecahedra, photochemical reduction.

Keywords: Au/Ag bimetallic, galvanic replacement reaction, nanodecahedra, photochemical reduction.

References

[1] J. K. Kim, T. H. Park, D. J. Jang, Surface-Enhanced Raman Scattering and Photothermal Effect of Hollow Au Nanourchins with Well-Defined Cavities, J. Nanopart. Res., Vol. 22, No. 305, 2020, pp. 1-11, https://doi.org/10.1007/s11051-020-05034-y.
[2] B. Klębowski, J. Depciuch, M. P. Wojtan, J. Baran, Applications of Noble Metal-Based Nanoparticles in Medicine, Int. J. Mol. Sci., Vol. 19, No. 12, 2018, pp. 4031, https://doi.org/10.3390/ijms19124031.
[3] O. V. Dement’eva, M. E. Kartseva, Noble Metal Nanoparticles in Biomedical Thermoplasmonics, Colloid J.,
Vol. 85, No. 4, 2023, pp 500-519, https://doi.org/10.1134/S1061933X23700187.
[4] N. L. Netzer, C. Qiu, Y. Zhang, C. Lin, L. Zhang, H. Fong, C. Jiang, Gold–Silver Bimetallic Porous Nanowires for Surface-Enhanced Raman Scattering, Chem. Commun., Vol. 47, No. 34, 2011, pp. 9606-9608, https://doi.org/10.1039/C1CC13641K.
[5] Y. Wang, J. Wan, R. J. Miron, Y. Zhao, Y. Zhang, Antibacterial Properties and Mechanisms of Gold–Silver Nanocages, Nanoscale, Vol. 8, No. 21, 2016, pp. 11143-11152, https://doi.org/10.1039/C6NR01114D.
[6] J. K. Majhi, P. K. Kuiri, Spectral Tuning of Plasmon Resonances of Bimetallic Noble Metal Alloy Nanoparticles through Compositional Changes, Plasmon, Vol. 15, No. 3, 2020, pp. 797-804, https://doi.org/10.1007/s11468-019-01103-8.
[7] J. K. Majhi, P. K. Kuiri, Enhancement of Spectral Shift of Plasmon Resonances in Bimetallic Noble Metal Nanoparticles in Core–Shell Structure, J. Nanopart. Res., Vol. 22, No. 4, 2020, pp. 86, https://doi.org/10.1007/s11051-020-4782-0.
[8] H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, H. J. Xu, Ag@Au Core-Shell Dendrites: A Stable, Reusable and Sensitive Surface Enhanced Raman Scattering Substrate, Sci. Rep., Vol. 5, No. 1, 2015, pp. 14502, https://doi.org/10.1038/srep14502.
[9] H. J. Huang, M. H. Shiao, Y. W. Lin, B. J. Lin, J. Su, Y. S. Lin, H. W. Chang, Au@Ag Dendritic Nanoforests for Surface-Enhanced Raman Scattering Sensing, Nanomater, Vol. 11, No. 7, 2021, pp. 1736, https://doi.org/10.3390/nano11071736.
[10] Y. Yang, J. Shi, G. Kawamura, M. Nogami, Preparation of Au–Ag, Ag–Au Core–Shell Bimetallic Nanoparticles for Surface-Enhanced Raman Scattering, Scr. Mater., Vol. 58, No. 10, 2008, pp. 862-865, https://doi.org/10.1016/j.scriptamat.2008.01.017.
[11] X. H. Pham, M. Lee, S. Shim, S. Jeong, H. M. Kim, E. Hahm, S. H. Lee, Y. S. Lee, D. H. Jeong, B. H. Jun, Highly Sensitive and Reliable SERS Probes Based on Nanogap Control of a Au–Ag Alloy on Silica Nanoparticles, RSC Adv., Vol. 7, No. 12, 2017, pp. 7015-7021, https://doi.org/10.1039/C6RA26213A.
[12] Y. F. Fu, J. Zhu, X. Li, G. J. Weng, J. J. Li, J. W. Zhao, Au-Ag Nano-Garlands as a Versatile SERS Substrate: Two-Step Synthesis Realizes the Growth of Petal-Shaped Branches on Hollow Au-Ag Nanoshells, Colloids Surf, A: Physicochem. Eng. Aspects, Vol. 698, 2024, pp. 134541, https://doi.org/10.1016/j.colsurfa.2024.134541.
[13] Y. Liu, Z. Qin, X. Jia, J. Zhou, H. Li, X. Wang, G. Wang, Direct Detection of Polystyrene Microspheres by Using Easily Fabricated Ag Core Embedded Au Film SERS Substrates with High Sensitivity, J. Environ. Chem. Eng., Vol. 12, No. 5, 2024, pp. 113311, https://doi.org/10.1016/j.jece.2024.113311.
[14] A. Kohut, A. Kéri, V. Horváth, J. Kopniczky, T. Ajtai, B. Hopp, G. Galbács, Z. Geretovszky, Facile and Versatile Substrate Fabrication for Surface Enhanced Raman Spectroscopy Using Spark Discharge Generation of Au/Ag Nanoparticles, Appl. Surf. Sci., Vol. 531, 2020, pp. 147268, https://doi.org/10.1016/j.apsusc.2020.147268.
[15] G. A. Khan, O. Ö. Demirtaş, A. Bek, A. S. Bhatti, W. Ahmed, Facile Fabrication of Au-Ag Alloy Nanoparticles on Filter Paper: Application in SERS based Swab Detection and Multiplexing, Vib. Spectrosc., Vol. 120, 2022,
pp. 103359, https://doi.org/10.1016/j.vibspec.2022.103359.
[16] S. H. Lee, I. B. Ansah, C. Mun, J. Y. Yang, S. Y. Shin, J. Na, J. Park, S. Y. Nam, S. Lee, J. Kim, Galvanic Engineering of Interior Hotspots in 3D Au/Ag Bimetallic SERS Nanocavities for Ultrasensitive and Rapid Recognition of Phthalate Esters, Chem. Eng. J., Vol. 470, 2023, pp. 144161, https://doi.org/10.1016/j.cej.2023.144161.
[17] Y. C. Liu, S. J. Yang, Improved Surface-Enhanced Raman Scattering Based on Ag–Au Bimetals Prepared by Galvanic Replacement Reactions, Electrochim. Acta, Vol. 52, No. 5, 2007, pp. 1925-1931, https://doi.org/10.1016/j.electacta.2006.07.057.
[18] J. M. Park, H. E. Choi, D. Kudaibergen, J. H. Kim, K. S. Kim, Recent Advances in Hollow Gold Nanostructures for Biomedical Applications, Front. Chem., Vol. 9, 2021, pp. 699284, https://doi.org/10.3389/fchem.2021.699284.
[19] J. Emsley, The Elements, Oxford University Press, 1998.
[20] V. X. Hoa, N. D. Dien, P. T. T. Ha, N. V. Truong, N. X. Ca, V. V. Thu, Tunable LSPR of Silver/Gold Bimetallic Nanoframes and Their SERS Activity for Methyl Red Detection, RSC Adv., Vol. 11, No. 24, 2021,
pp. 14596-14606, https://doi.org/10.1039/D1RA01477C.
[21] J. Zhu, S. Zhang, G. J. Weng, J. J. Li, J. W. Zhao, The Morphology Regulation and Plasmonic Spectral Properties of Au@AuAg Yolk-Shell Nanorods with Controlled Interior Gap, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., Vol. 236, 2020, pp. 118343, https://doi.org/10.1016/j.saa.2020.118343.
[22] B. R. González, A. Burrows, M. Watanabe, C. J. Kiely, L. M. L. Marzán, Multishell Bimetallic AuAg Nanoparticles: Synthesis, Structure and Optical Properties, J. Mater. Chem., Vol. 15, No. 17, 2005, pp. 1755-1759, https://doi.org/10.1039/B500556F.
[23] S. G. Jiji, K. G. Gopchandran, Au–Ag Hollow Nanostructures with Tunable SERS Properties, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., Vol. 171, 2017, pp. 499-506, https://doi.org/10.1016/j.saa.2016.08.022.
[24] C. H. Tsai, S. Y. Chen, J. M. Song, M. Haruta, H. Kurata, Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures, Nanoscale Res. Lett., Vol. 10, 2015, pp. 438, https://doi.org/10.1186/s11671-015-1141-7.
[25] A. R. Roosen, W. C. Carter, Simulations of Microstructural Evolution: Anisotropic Growth and Coarsening, Phys. A: Stat. Mech. Appl., Vol. 261, No. 1-2, 1998, pp. 232-247, https://doi.org/10.1016/S0378-4371(98)00377-X.