Le Van Hieu

Main Article Content

Abstract

In this work, a highly nonlinear chalcogenide photonic crystal fiber (PCF) infiltrated with 1, 2-dibromoethane (C2H4Br2) has been numerically proposed to generate a super-continuum application. The proposed PCF exhibits numerous significant optical guiding properties, including dispersion, effective mode area, and nonlinearity. The simulation results show that the optimized PCF with lattice constant Λ = 2.0 μm and filling factor f = 0.5 exhibits all normal dispersion regions. The optimized fiber has a maximum point of the dispersion curve at a wavelength of 3.15 μm, which is closest to the pump wavelength of 3.0 μm. At the pump wavelength of 3.0 μm, the optimized fiber has a dispersion value of -20.05 ps/nm/km, an effective area of ​​5.88 µm², and a nonlinearity coefficient of 7837.63 w⁻¹km⁻¹. This nonlinearity coefficient value is very high compared to other fibers. The estimated parameters are suitable for further simulation and investigation of the design for broadband super-continuum generation.


Keywords: Photonic crystal fiber, dispersion characteristics, chalcogenide, liquids.

Keywords: Photonic crystal fiber, dispersion characteristics, chalcogenide, liquids.

References

[1] Y. Huang, H. Yang, S. Zhao, Y. Mao, S. Chen, Design of Photonic Crystal Fibers with Flat Dispersion and Three Zero Dispersion Wavelengths for Coherent Supercontinuum Generation in Both Normal and Anomalous Regions, Results in Physics., Vol. 23, 2021, pp. 104033, https://doi.org/10.1016/j.rinp.2021.104033.
[2] J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding, Opt. Lett., Vol. 21, 1996, pp. 1547-1549, https://doi.org/10.1364/OL.21.001547.
[3] S. M. A. Razzak, Y. Namihira, Highly Birefringent Photonic Crystal Fibers with Near-Zero Dispersion at 1550 nm Wavelength, J. Mod. Opt., Vol. 56, 2009, pp. 1188-1193, https://doi.org/10.1080/09500340902994132.
[4] S. M. A. Razzak, Y. Namihira, Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers, IEEE Photon. Technol. Lett., Vol. 20, 2008, pp. 249-251, https://doi.org/10.1109/LPT.2007.912986.
[5] T. Matsui, J. Zhou, K. Nakajima, I. Sankawa, Dispersion Flattened Photonic Crystal Fiber With Large Effective Area and Low Confinement Loss, J. Light wave Technol., Vol. 23, No. 12, 2005, pp. 4178–4183, https://opg.optica.org/jlt/abstract.cfm?URI=jlt-23-12-4178.
[6] B. Kaur, S. Kumar, B. K. Kaushik, Advances in Photonic Crystal Fiber: Sensing and Supercontinuum Generation Applications, Opt. Fiber Technol., Vol. 72, 2022, pp. 102982, https://doi.org/10.1016/j.yofte.2022.102982
[7] K. Saitoh, M. Koshiba, Highly Nonlinear Dispersion Flattened Photonic Crystal Fibers For Supercontinuum Generation In A Telecommunication Window, Opt. Express., Vol. 12, No. 10, 2004, pp. 2027-2032, https://doi.org/10.1364/OPEX.12.002027.
[8] T. L. Wu, C. H. Chao, A Novel Ultra-Flattened Dispersion Photonic Crystal Fiber, IEEE Photon. Technol. Lett., Vol. 17, No.1, 2005, pp. 67-69, https://doi.org/10.1109/LPT.2004.837475.
[9] M. J. M. Zamani, M. Rouzbahani, Highly Efficient Hybrid-Structured Photonic Crystal Fiber with Ultra-Low Loss and Near-Zero Flat Dispersion for Terahertz Waveguiding, Opt. Quantum Electron., Vol. 56, 2024, pp. 1362, https://doi.org/10.1007/s11082-024-07258-x.
[10] N. V. T. Minh, L. C. Van, P. N. Thi Hong, V. T. Hoang, H. T. Nguyen, H. V. Le, Supercontinuum Generation in A Square-Lattice Photonic Crystal Fiber Using Carbon Disulfide Infiltration, Optik., Vol. 286, 2023, pp. 171049, https://doi.org/10.1016/j.ijleo.2023.171049.
[11] K. Kaneshima, Y. Namihira, N. Zou, H. Higa, Y. Nagata, Numerical Investigation of Octagonal Photonic Crystal Fibers With Strong Confinement Field, IEICE Trans. Electron., Vol. E89-C, No. 6, 2006, pp. 830–837, doi: 10.1093/ietele/e89-c.6.830.
[12] R. Raei, M. Ebnali-Heidari, H. Saghaei, Supercontinuum Generation In Organic Liquid-Liquid Core Cladding Photonic Crystal Fiber in Visible and Near-Infrared Regions, J. Opt. Soc. Am. B., Vol. 35, No. 2, 2018,
pp. 0740-3224, https://doi.org/10.1364/JOSAB.35.000323.
[13] H. V. Le, V. T. Hoang, G. St˛epniewski, T. L. Canh, N. V. T. Minh, R. Kasztelanic, M. Klimczak, J. Pniewski, K. X. Dinh, A. M. Heidt, R. Buczy´nski, Low Pump Power Coherent Supercontinuum Generation in Heavy Metal Oxide Solid-Core Photonic Crystal Fiber Infiltrated with Carbon Tetrachloride Covering 930 – 2500 nm, Opt. Express., Vol. 29, No. 24, 2021, pp. 39587-39601, https://doi.org/10.1364/JOSAB.35.000323.
[14] F. Begum, Y. Namihira, Design of Supercontinuum Generating Photonic Crystal Fiber at 1.06, 1.31 and 1.55 µm Wavelengths for Medical Imaging and Optical Transmission Systems, Natural Science., Vol. 3, No. 5, 2011,
pp. 401-407, https://doi.org/10.4236/ns.2011.35054.
[15] A. Labruyere, A. Tonello, V. Couderc, G. Huss, P. Leproux, Compact Supercontinuum Sources and Their Biomedical Applications, Opt. Fiber Technol., Vol. 18, No. 2, 2012, pp. 375-378, https://doi.org/10.1016/j.yofte.2012.08.003.
[16] H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, R. Kasztelanic, Measurement of Temperature and Concentration Influence on the Dispersion of Fused Silica Glass Photonic Crystal Fiber Infiltrated with Water–Ethanol Mixture, Opt. Commun., Vol. 407, 2018, pp. 417–422, https://doi.org/10.1016/j.optcom.2017.09.059.
[17] D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, N. Peyghambarian, Mid-IR Supercontinuum Generation in An Integrated Liquid-Core Optical Fiber Filled With CS2, Opt. Mater. Express., Vol. 3, No. 9, 2013, pp. 1358-1364, https://doi.org/10.1364/OME.3.001358.
[18] H. L. Van, V. T. Hoang, T. L. Canh, Q. H. Dinh, H. T. Nguyen, N. V. T. Minh, M. Klimczak, R. Buczynski, R. Kasztelanic, Silica-Based Photonic Crystal Fiber Infiltrated with 1,2-dibromoethane for Supercontinuum Generation, Appl. Opt., Vol. 60, No. 24, 2021, pp. 7268-7278, https://doi.org/10.1364/AO.430843.
[19] T. K. Phan, L. D. Vu, H. P. T. Nguyen, Y. Ohishi, Coherent Mid-Infrared Supercontinuum Seneration in Tellurite All-Solid Microstructured Optical Fibers with Anomalous and Normal Dispersion Property, Results Opt., Vol. 13, 2023, pp. 100576, https://doi.org/10.1016/j.rio.2023.100576.
[20] H. Pakarzadeh, Z. Fatemipanah, U. A. Kumar, Supercontinuum Generation In Silica-Based Photonic Crystal Fibers For High-Resolution Ophthalmic Optical Coherence Tomography, Silicon., Vol. 15, 2023, pp. 6655-6661, https://doi.org/10.1007/s12633-023-02533-0.
[21] X. Yang, J. Yang, Q. Xu, H. Yang, Super-Flat Coherent Mid-Infrared Supercontinuum in All-Normal Dispersion As39Se61 Chalcogenide Photonic Crystal Fiber, Phys. Scr., Vol. 98, 2023, pp. 125512, https://doi.org/10.1088/1402-4896/ad0a2f.
[22] Y. Wang, X. Zhang, X. Ren, L. Zheng, X. Liu, Y. Huang, Design and Analysis of A Dispersion Flattened and Highly Nonlinear Photonic Crystal Fiber with Ultralow Confinement Loss, Applied optics., Vol. 49, No. 3, 2010, pp. 292-297, https://doi.org/10.1364/AO.49.000292.
[23] H. V. Le, Coherence Evolution of Multi-Pulse Pumped Super-continuum in Multicomponent GeSe2-As2Se3-PbSe Chalcogenide Photonic Crystal Fiber with Four Zero-Dispersion Wavelengths, Journal of the Optical Society of America B., Vol. 41, No. 12, 2024, pp. 2780-2790, https://doi.org/10.1364/JOSAB.539742.
[24] T. K. Phan, L. D. Vu, H. P. T. Nguyen, Y. Ohishi, Coherent Mid-Infrared Supercontinuum Generation in Tellurite All-Solid Microstructured Optical Fibers with Anomalous and Normal Dispersion Property, Results Opt., Vol. 13, 2023, pp. 100576, https://doi.org/10.1016/j.rio.2023.100576.
[25] T. T. B. Le, T. D. Van, L. C. Van, T. N. T. Ha, D. H. Trong, T. N. Thi, Nonlinear Properties of Circular Solid-Core Photonic Crystal Fiber With The Difference of Air-Hole Diameters and the Spacing of Air-Holes in the Cladding, Hue University Journal of Science: Natural Science., Vol. 131, No. 1D, 2022, pp. 13–21, https://doi.org/10.26459/hueunijns.v131i1D.6685.
[26] V. T. M. Ngoc, T. V. Thanh, C. T. H. Sam, L. T. B. Tran, D. V. Trong, N. T. Thuy, L. V. Hieu, C. V. Lanh, Optimization Of Optical Properties Of Ge20Sb5Se75-Based Photonic Crystal Fibers, Vinh University Journal of Science., Vol. 51, No. 3A, 2022, pp. 12-21, DOI: 10.56824/vujs.2022nt16.