Structural Optimization of 1, 2-dibromoethane-filled Hexagonal Photonic Crystal Fiber Based on As39Se61 Glass for Super-continuum Applications
Main Article Content
Abstract
In this work, a highly nonlinear chalcogenide photonic crystal fiber (PCF) infiltrated with 1, 2-dibromoethane (C2H4Br2) has been numerically proposed to generate a super-continuum application. The proposed PCF exhibits numerous significant optical guiding properties, including dispersion, effective mode area, and nonlinearity. The simulation results show that the optimized PCF with lattice constant Λ = 2.0 μm and filling factor f = 0.5 exhibits all normal dispersion regions. The optimized fiber has a maximum point of the dispersion curve at a wavelength of 3.15 μm, which is closest to the pump wavelength of 3.0 μm. At the pump wavelength of 3.0 μm, the optimized fiber has a dispersion value of -20.05 ps/nm/km, an effective area of 5.88 µm², and a nonlinearity coefficient of 7837.63 w⁻¹km⁻¹. This nonlinearity coefficient value is very high compared to other fibers. The estimated parameters are suitable for further simulation and investigation of the design for broadband super-continuum generation.
Keywords: Photonic crystal fiber, dispersion characteristics, chalcogenide, liquids.
References
[2] J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding, Opt. Lett., Vol. 21, 1996, pp. 1547-1549, https://doi.org/10.1364/OL.21.001547.
[3] S. M. A. Razzak, Y. Namihira, Highly Birefringent Photonic Crystal Fibers with Near-Zero Dispersion at 1550 nm Wavelength, J. Mod. Opt., Vol. 56, 2009, pp. 1188-1193, https://doi.org/10.1080/09500340902994132.
[4] S. M. A. Razzak, Y. Namihira, Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers, IEEE Photon. Technol. Lett., Vol. 20, 2008, pp. 249-251, https://doi.org/10.1109/LPT.2007.912986.
[5] T. Matsui, J. Zhou, K. Nakajima, I. Sankawa, Dispersion Flattened Photonic Crystal Fiber With Large Effective Area and Low Confinement Loss, J. Light wave Technol., Vol. 23, No. 12, 2005, pp. 4178–4183, https://opg.optica.org/jlt/abstract.cfm?URI=jlt-23-12-4178.
[6] B. Kaur, S. Kumar, B. K. Kaushik, Advances in Photonic Crystal Fiber: Sensing and Supercontinuum Generation Applications, Opt. Fiber Technol., Vol. 72, 2022, pp. 102982, https://doi.org/10.1016/j.yofte.2022.102982
[7] K. Saitoh, M. Koshiba, Highly Nonlinear Dispersion Flattened Photonic Crystal Fibers For Supercontinuum Generation In A Telecommunication Window, Opt. Express., Vol. 12, No. 10, 2004, pp. 2027-2032, https://doi.org/10.1364/OPEX.12.002027.
[8] T. L. Wu, C. H. Chao, A Novel Ultra-Flattened Dispersion Photonic Crystal Fiber, IEEE Photon. Technol. Lett., Vol. 17, No.1, 2005, pp. 67-69, https://doi.org/10.1109/LPT.2004.837475.
[9] M. J. M. Zamani, M. Rouzbahani, Highly Efficient Hybrid-Structured Photonic Crystal Fiber with Ultra-Low Loss and Near-Zero Flat Dispersion for Terahertz Waveguiding, Opt. Quantum Electron., Vol. 56, 2024, pp. 1362, https://doi.org/10.1007/s11082-024-07258-x.
[10] N. V. T. Minh, L. C. Van, P. N. Thi Hong, V. T. Hoang, H. T. Nguyen, H. V. Le, Supercontinuum Generation in A Square-Lattice Photonic Crystal Fiber Using Carbon Disulfide Infiltration, Optik., Vol. 286, 2023, pp. 171049, https://doi.org/10.1016/j.ijleo.2023.171049.
[11] K. Kaneshima, Y. Namihira, N. Zou, H. Higa, Y. Nagata, Numerical Investigation of Octagonal Photonic Crystal Fibers With Strong Confinement Field, IEICE Trans. Electron., Vol. E89-C, No. 6, 2006, pp. 830–837, doi: 10.1093/ietele/e89-c.6.830.
[12] R. Raei, M. Ebnali-Heidari, H. Saghaei, Supercontinuum Generation In Organic Liquid-Liquid Core Cladding Photonic Crystal Fiber in Visible and Near-Infrared Regions, J. Opt. Soc. Am. B., Vol. 35, No. 2, 2018,
pp. 0740-3224, https://doi.org/10.1364/JOSAB.35.000323.
[13] H. V. Le, V. T. Hoang, G. St˛epniewski, T. L. Canh, N. V. T. Minh, R. Kasztelanic, M. Klimczak, J. Pniewski, K. X. Dinh, A. M. Heidt, R. Buczy´nski, Low Pump Power Coherent Supercontinuum Generation in Heavy Metal Oxide Solid-Core Photonic Crystal Fiber Infiltrated with Carbon Tetrachloride Covering 930 – 2500 nm, Opt. Express., Vol. 29, No. 24, 2021, pp. 39587-39601, https://doi.org/10.1364/JOSAB.35.000323.
[14] F. Begum, Y. Namihira, Design of Supercontinuum Generating Photonic Crystal Fiber at 1.06, 1.31 and 1.55 µm Wavelengths for Medical Imaging and Optical Transmission Systems, Natural Science., Vol. 3, No. 5, 2011,
pp. 401-407, https://doi.org/10.4236/ns.2011.35054.
[15] A. Labruyere, A. Tonello, V. Couderc, G. Huss, P. Leproux, Compact Supercontinuum Sources and Their Biomedical Applications, Opt. Fiber Technol., Vol. 18, No. 2, 2012, pp. 375-378, https://doi.org/10.1016/j.yofte.2012.08.003.
[16] H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh, R. Kasztelanic, Measurement of Temperature and Concentration Influence on the Dispersion of Fused Silica Glass Photonic Crystal Fiber Infiltrated with Water–Ethanol Mixture, Opt. Commun., Vol. 407, 2018, pp. 417–422, https://doi.org/10.1016/j.optcom.2017.09.059.
[17] D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, N. Peyghambarian, Mid-IR Supercontinuum Generation in An Integrated Liquid-Core Optical Fiber Filled With CS2, Opt. Mater. Express., Vol. 3, No. 9, 2013, pp. 1358-1364, https://doi.org/10.1364/OME.3.001358.
[18] H. L. Van, V. T. Hoang, T. L. Canh, Q. H. Dinh, H. T. Nguyen, N. V. T. Minh, M. Klimczak, R. Buczynski, R. Kasztelanic, Silica-Based Photonic Crystal Fiber Infiltrated with 1,2-dibromoethane for Supercontinuum Generation, Appl. Opt., Vol. 60, No. 24, 2021, pp. 7268-7278, https://doi.org/10.1364/AO.430843.
[19] T. K. Phan, L. D. Vu, H. P. T. Nguyen, Y. Ohishi, Coherent Mid-Infrared Supercontinuum Seneration in Tellurite All-Solid Microstructured Optical Fibers with Anomalous and Normal Dispersion Property, Results Opt., Vol. 13, 2023, pp. 100576, https://doi.org/10.1016/j.rio.2023.100576.
[20] H. Pakarzadeh, Z. Fatemipanah, U. A. Kumar, Supercontinuum Generation In Silica-Based Photonic Crystal Fibers For High-Resolution Ophthalmic Optical Coherence Tomography, Silicon., Vol. 15, 2023, pp. 6655-6661, https://doi.org/10.1007/s12633-023-02533-0.
[21] X. Yang, J. Yang, Q. Xu, H. Yang, Super-Flat Coherent Mid-Infrared Supercontinuum in All-Normal Dispersion As39Se61 Chalcogenide Photonic Crystal Fiber, Phys. Scr., Vol. 98, 2023, pp. 125512, https://doi.org/10.1088/1402-4896/ad0a2f.
[22] Y. Wang, X. Zhang, X. Ren, L. Zheng, X. Liu, Y. Huang, Design and Analysis of A Dispersion Flattened and Highly Nonlinear Photonic Crystal Fiber with Ultralow Confinement Loss, Applied optics., Vol. 49, No. 3, 2010, pp. 292-297, https://doi.org/10.1364/AO.49.000292.
[23] H. V. Le, Coherence Evolution of Multi-Pulse Pumped Super-continuum in Multicomponent GeSe2-As2Se3-PbSe Chalcogenide Photonic Crystal Fiber with Four Zero-Dispersion Wavelengths, Journal of the Optical Society of America B., Vol. 41, No. 12, 2024, pp. 2780-2790, https://doi.org/10.1364/JOSAB.539742.
[24] T. K. Phan, L. D. Vu, H. P. T. Nguyen, Y. Ohishi, Coherent Mid-Infrared Supercontinuum Generation in Tellurite All-Solid Microstructured Optical Fibers with Anomalous and Normal Dispersion Property, Results Opt., Vol. 13, 2023, pp. 100576, https://doi.org/10.1016/j.rio.2023.100576.
[25] T. T. B. Le, T. D. Van, L. C. Van, T. N. T. Ha, D. H. Trong, T. N. Thi, Nonlinear Properties of Circular Solid-Core Photonic Crystal Fiber With The Difference of Air-Hole Diameters and the Spacing of Air-Holes in the Cladding, Hue University Journal of Science: Natural Science., Vol. 131, No. 1D, 2022, pp. 13–21, https://doi.org/10.26459/hueunijns.v131i1D.6685.
[26] V. T. M. Ngoc, T. V. Thanh, C. T. H. Sam, L. T. B. Tran, D. V. Trong, N. T. Thuy, L. V. Hieu, C. V. Lanh, Optimization Of Optical Properties Of Ge20Sb5Se75-Based Photonic Crystal Fibers, Vinh University Journal of Science., Vol. 51, No. 3A, 2022, pp. 12-21, DOI: 10.56824/vujs.2022nt16.