Air Pollution Monitoring in Hanoi Using Proton Induced X-ray Emission Analysis of Mosses on Pelletron Accelerator
Main Article Content
Abstract
In this work, mosses have been used as a biological indicator showing the presence of the metallic dust in the air. The Proton Induced X-ray Emission (PIXE) analysis on a Pelletron accelerator of the VNU University of Science is used for determination of concentration of the metallic dusts in air inHanoi. Depending on the observed places, dusts may contain Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Rb, Cd or Pb metals with different concentrations. The cadmium (Cd) and lead (Pb) maximum concentrations are of 121.4 ppm and 5.5 ppm, respectively. The results have shown that Cd is presented at some sites, and Pb appears at most sites. We argue that Cd and Pb pollutions are caused by the industry and the traffic, correspondingly.
Keywords:
Air pollution; Pelletron accelerator; PIXE analysis; Biomonitor; Heavy metal pollution.
References
[1] G. Gjengedal, E. Steinnes, Uptake of Metal Ions in Moss from Artificial Precipitation, Environmental Monitoring and Assessment, Vol. 14, 1990, pp. 77-87, https://doi.org/10.1007/BF00394359.
[2] B. A. Markert, A. M. Breure, H. G. Zechmeister, Bioindicators and Biomonitors: Principles, Concepts and Applications, Elsevier Science, Oxford, 2003.
[3] J. Namieśnik, M. D. L. Guardia, Current Air Quality Analytics and Monitoring: A Review, Analytica Chimica Acta, Vol. 853, 2015, pp. 116-126, https://doi.org/10.1016/j.aca.2014.10.018.
[4] T. K. Parmar, D. Rawtani, Y. K. Agrawal, Bioindicators: The Natural Indicator of Environmental Pollution, Frontiers in Life Science, Vol. 9, No. 2, 2016, pp. 117-125, https://doi.org/10.1080/21553769.2016.1162753.
[5] A. Rühiling, Atmospheric Heavy Metal Deposition in Europe – Estimations Based on Moss Analysis, 10th World Clean Air Congress, Nordic Council of Ministers, 1994, pp. 1-159.
[6] N. Zupančič, E. Bozau, Effect of the Coronavirus Pandemic Lockdown to Elemental Composition of Peat Mosses, Environmental Science and Pollution Research, Vol. 29, 2022, pp. 25473-25485, https://doi.org/10.1007/s11356-021-17564-6.
[7] M. M. Makholm, D. J. Mladenoff, Efficacy of a Biomonitoring (Moss Bag) Technique for Determining Element Deposition on a Mid-Range (375 km) Scale, Environmental Monitoring and Assessment, Vol. 104, No. 1-3, 2005, pp. 1-18, https://doi.org/10.1007/s10661-005-6398-3.
[8] O. A. Culicov, R. Mocanu, M. V. Frontasyeva, L. Yurukova, E. Steinnes, Active Moss Biomonitoring Applied to an Industrial Site in Romania: Relative Accumulation of 36 Elements in Moss Bags, Environmental Monitoring and Assessment, Vol. 108, No. 1, 2005, pp. 55-65, https://doi.org/10.1007/s10661-005-9057-3.
[9] H. Harmens, A. Buse, P. Böker, D. Norris, G. Mills, B. Williams, E. Steinnes, Heavy Metal Concentrations in European Mosses: 2000/2001 Survey, Journal of Atmospheric Chemistry, Vol. 49, No. 1–3, 2004, pp. 425–436, https://doi.org/10.1007/s10874-004-1257-0.
[10] O. Abulude, E. A. Akinyemi, S. A. Olowolafe, S. D. Oluwagbayide, D. Urošević, Trends in Air Pollution: The Use of Mosses as Biomonitors, Quality of Life (Banja Luka) – Apeiron, Vol. 12, No. 1-2, 2021, pp. 31-38, https://doi.org/10.7251/QOL2101031A.
[11] A. H. Baczewska-Dąbrowska, B. Gworek, W. Dmuchowski, The Use of Mosses in Biomonitoring of Air Pollution in the Terrestrial Environment: A Review, Environmental Protection and Natural Resources, Vol. 34, No. 2(96), 2023, pp. 19-30, https://doi.org/10.2478/oszn-2023-0005.
[12] T. Calligaro, et al., Chapter 5 Ion Beam Microanalysis, Comprehensive Analytical Chemistry, Vol. 42, 2004,
pp. 227-276, https://doi.org/10.1016/S0166-526X(04)80009-6.
[13] F. S. Olise, et al., A Combination of μ-PIXE, XRF, SEM-EDS and XRD Techniques in the Analyses of Sn-Mine Tailings, Journal of Radiation and Nuclear Applications, Vol. 2, No. 3, 2017, pp. 95-102, http://dx.doi.org/10.18576/jrna/020303.
[14] A. H. Elzain, et al., Comparison Between XRF, PIXE and ICP-OES Techniques Applied for Analysis of Some Medicinal Plants, IOSR Journal of Applied Chemistry (IOSR-JAC), Vol. 9, No. 4, 2016, pp. 06-12, https://doi.org/10.9790/5736-0904010612.
[15] M. H. Martin, P. J. Coughtrey, Biological Monitoring of Heavy Metal Pollution – Land and Air, Pollution Monitoring Series, Applied Science Publishers, London, 1982, pp. 136-142.
[16] D. N. Rao, Response of Bryophytes to Air Pollution, In: Bryophyte Ecology, Chapman and Hall, London, 1984, pp. 445-471.
[17] S. Johansson, J. L. Campbell, Particle Induced X Ray Emission Spectrometry: An Accurate Technique in the Analysis of Biological, Environmental and Geological Samples, Applied Spectroscopy, Vol. 30, No. 1, 1976,
pp. 1-6, https://doi.org/10.1366/000370276774698808.
[18] K. Ishii, PIXE and Its Applications to Elemental Analysis, Quantum Beam Science, Vol. 3, No. 2, 2019,
Article 12, https://doi.org/10.3390/qubs3020012.
[19] P. D. Hien, V. T. Bac, N. T. H. Thinh, H. L. Anh, D. D. Thang, N. T. Nghia, A Comparison Study of Chemical Compositions and Sources of PM1.0 and PM2.5 in Hanoi, Aerosol and Air Quality Research, Vol. 21, No. 10, 2021. https://doi.org/10.4209/aaqr.210056.
[2] B. A. Markert, A. M. Breure, H. G. Zechmeister, Bioindicators and Biomonitors: Principles, Concepts and Applications, Elsevier Science, Oxford, 2003.
[3] J. Namieśnik, M. D. L. Guardia, Current Air Quality Analytics and Monitoring: A Review, Analytica Chimica Acta, Vol. 853, 2015, pp. 116-126, https://doi.org/10.1016/j.aca.2014.10.018.
[4] T. K. Parmar, D. Rawtani, Y. K. Agrawal, Bioindicators: The Natural Indicator of Environmental Pollution, Frontiers in Life Science, Vol. 9, No. 2, 2016, pp. 117-125, https://doi.org/10.1080/21553769.2016.1162753.
[5] A. Rühiling, Atmospheric Heavy Metal Deposition in Europe – Estimations Based on Moss Analysis, 10th World Clean Air Congress, Nordic Council of Ministers, 1994, pp. 1-159.
[6] N. Zupančič, E. Bozau, Effect of the Coronavirus Pandemic Lockdown to Elemental Composition of Peat Mosses, Environmental Science and Pollution Research, Vol. 29, 2022, pp. 25473-25485, https://doi.org/10.1007/s11356-021-17564-6.
[7] M. M. Makholm, D. J. Mladenoff, Efficacy of a Biomonitoring (Moss Bag) Technique for Determining Element Deposition on a Mid-Range (375 km) Scale, Environmental Monitoring and Assessment, Vol. 104, No. 1-3, 2005, pp. 1-18, https://doi.org/10.1007/s10661-005-6398-3.
[8] O. A. Culicov, R. Mocanu, M. V. Frontasyeva, L. Yurukova, E. Steinnes, Active Moss Biomonitoring Applied to an Industrial Site in Romania: Relative Accumulation of 36 Elements in Moss Bags, Environmental Monitoring and Assessment, Vol. 108, No. 1, 2005, pp. 55-65, https://doi.org/10.1007/s10661-005-9057-3.
[9] H. Harmens, A. Buse, P. Böker, D. Norris, G. Mills, B. Williams, E. Steinnes, Heavy Metal Concentrations in European Mosses: 2000/2001 Survey, Journal of Atmospheric Chemistry, Vol. 49, No. 1–3, 2004, pp. 425–436, https://doi.org/10.1007/s10874-004-1257-0.
[10] O. Abulude, E. A. Akinyemi, S. A. Olowolafe, S. D. Oluwagbayide, D. Urošević, Trends in Air Pollution: The Use of Mosses as Biomonitors, Quality of Life (Banja Luka) – Apeiron, Vol. 12, No. 1-2, 2021, pp. 31-38, https://doi.org/10.7251/QOL2101031A.
[11] A. H. Baczewska-Dąbrowska, B. Gworek, W. Dmuchowski, The Use of Mosses in Biomonitoring of Air Pollution in the Terrestrial Environment: A Review, Environmental Protection and Natural Resources, Vol. 34, No. 2(96), 2023, pp. 19-30, https://doi.org/10.2478/oszn-2023-0005.
[12] T. Calligaro, et al., Chapter 5 Ion Beam Microanalysis, Comprehensive Analytical Chemistry, Vol. 42, 2004,
pp. 227-276, https://doi.org/10.1016/S0166-526X(04)80009-6.
[13] F. S. Olise, et al., A Combination of μ-PIXE, XRF, SEM-EDS and XRD Techniques in the Analyses of Sn-Mine Tailings, Journal of Radiation and Nuclear Applications, Vol. 2, No. 3, 2017, pp. 95-102, http://dx.doi.org/10.18576/jrna/020303.
[14] A. H. Elzain, et al., Comparison Between XRF, PIXE and ICP-OES Techniques Applied for Analysis of Some Medicinal Plants, IOSR Journal of Applied Chemistry (IOSR-JAC), Vol. 9, No. 4, 2016, pp. 06-12, https://doi.org/10.9790/5736-0904010612.
[15] M. H. Martin, P. J. Coughtrey, Biological Monitoring of Heavy Metal Pollution – Land and Air, Pollution Monitoring Series, Applied Science Publishers, London, 1982, pp. 136-142.
[16] D. N. Rao, Response of Bryophytes to Air Pollution, In: Bryophyte Ecology, Chapman and Hall, London, 1984, pp. 445-471.
[17] S. Johansson, J. L. Campbell, Particle Induced X Ray Emission Spectrometry: An Accurate Technique in the Analysis of Biological, Environmental and Geological Samples, Applied Spectroscopy, Vol. 30, No. 1, 1976,
pp. 1-6, https://doi.org/10.1366/000370276774698808.
[18] K. Ishii, PIXE and Its Applications to Elemental Analysis, Quantum Beam Science, Vol. 3, No. 2, 2019,
Article 12, https://doi.org/10.3390/qubs3020012.
[19] P. D. Hien, V. T. Bac, N. T. H. Thinh, H. L. Anh, D. D. Thang, N. T. Nghia, A Comparison Study of Chemical Compositions and Sources of PM1.0 and PM2.5 in Hanoi, Aerosol and Air Quality Research, Vol. 21, No. 10, 2021. https://doi.org/10.4209/aaqr.210056.