Synthesis of Tungsten Oxide Nanofibers Using Electrospinning Towards Gas Sensor Application
Main Article Content
Abstract
A simple strategy was introduced to synthesize WO3 nanofibers through an electrospinning process. In this work, tungstic acid, hydrogen peroxide and polyvinyl pyrrolidone were used as precursors. After electrospinning and drying the desired material was collected. The morphology and structure of the samples were analyzed by field-emission scanning electron microscopy (FESEM), energy-dispersive x-ray spectroscopy (EDS) mapping, and X-ray diffraction (XRD). The results show that the obtained materials are composed by nanofibers with uniform dimensions. The first tests of ammonia sensing were done from 250 to 450 °C; the WO3 NFs sensor presented a good response of 3.48 to 500 ppm NH3 at an operation temperature of 450 °C.
Keywords:
WO3, nanofibers, electrospinning, NH3, gas sensor.
References
[1] V. Galstyan, A. Ponzoni, I. Kholmanov, M.M. Natile, E. Comini, S. Nematov, G. Sberveglieri, Investigation of Reduced Graphene Oxide and a Nb-Doped TiO2 Nanotube Hybrid Structure to Improve the Gas-Sensing Response and Selectivity, ACS Sensors, Vol. 4, 2019, pp. 2094-2100, https://doi.org/10.1021/acssensors.9b00772.
[2] T. Wang, Q. Xing, R. Zhai, T. Huang, P. Song, Defect Engineering for SnO2 Improves NO2 Gas Sensitivity by Plasma Spraying, ACS Sensors, Vol. 9, 2024, pp. 3178-3186, https://doi.org/10.1021/acssensors.4c00485.
[3] Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based Nanomaterials in Gas Sensors, Solid State Ionics, Vol. 360, 2021, pp. 115544, https://doi.org/10.1016/j.ssi.2020.115544.
[4] T. T. Le Dang, T. N. T. Do, V. M. Do, M. Tonezzer, V. D. N. Tran, T. X. Chu, M. H. Chu, V. D. Nguyen, D. H. Nguyen, Eco-friendly Facile Synthesis of Co3O4–Pt Nanorods for Ethylene Detection towards Fruit Quality Monitoring, Sensors and Actuators A: Physical, Vol. 362, 2023, pp. 114607, https://doi.org/10.1016/j.sna.2023.114607.
[5] N. H. Tan, D. T. T. Le, T.T. Hoang, N. M. Duy, M. Tonezzer, C. T. Xuan, N. V. Duy, N. D. Hoa, Metal-decorated Indium Oxide Nanofibers Used as Nanosensor for Triethylamine Sensing towards Seafood Quality Monitoring, Colloids Surfaces A Physicochemical Engineering Aspects, Vol. 703, 2024, pp. 135268, https://doi.org/10.1016/j.colsurfa.2024.135268.
[6] J. Zhang, T. Shao, J. Dong, G. Li, J. Liu, Y. Liu, R. Yang, J. Gao, L. Li, Y. Jia, L. Zhang, H. Lu, Construction of Mesoporous WO3 Nanofibers Functionalized with Nanoscale PtO Catalysts for Enhanced Acetone Sensing Properties, J. Alloys Compounds, Vol. 933, 2023, pp. 2-10, https://doi.org/10.1016/j.jallcom.2022.167703.
[7] I. Cho, J. Ko, D. D. O. Henriquez, D. Yang, I. Park, Recent Advances in 1D Nanostructure Assembly and Direct Integration Methods for Device Applications, Small Methods, Vol. 2400474, 2024, pp. 1-30, https://doi.org/10.1002/smtd.202400474.
[8] T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional Metal-oxide-based Heterostructural Gas-sensing Materials: A Review, Sensors and Actuators B: Chemical, Vol. 221, 2015, pp. 1570-1585, https://doi.org/10.1016/j.snb.2015.08.003.
[9] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one Dimensional Metal Oxide Semiconductors: Preparation, Characterization and Application as Chemical Sensors, Progress in Materials Science, Vol. 54, 2009, pp. 1-67, https://doi.org/10.1016/j.pmatsci.2008.06.003.
[10] C. I. Ossai, N. Raghavan, Nanostructure and Nanomaterial Characterization, Growth Mechanisms, and Applications, Nanotechnology Review, Vol. 7, 2018, pp. 209-231, https://doi.org/10.1515/ntrev-2017-0156.
[11] W. Smok, T. Tański, A Short Review on Various Engineering Applications of Electrospun One-Dimensional Metal Oxides, Materials (Basel), Vol. 14, 2021, pp. 5139, https://doi.org/10.3390/ma14185139.
[12] P. Karnati, S. Akbar, P. A. Morris, Conduction Mechanisms in One Dimensional Core-shell Nanostructures for Gas Sensing: A Review, Sensors and Actuators B: Chemical, Vol. 295, 2019, pp. 127-143, https://doi.org/10.1016/j.snb.2019.05.049.
[13] J. Zhang, D. Leng, L. Zhang, G. Li, F. Ma, J. Gao, H. Lu, B. Zhu, Porosity and Oxygen Vacancy Engineering of Mesoporous WO3 Nanofibers for Fast and Sensitive Low-Temperature NO2 Sensing, J. Alloys and Compounds, Vol. 853, 2021, pp. 157339, https://doi.org/10.1016/j.jallcom.2020.157339.
[14] M. Punginsang, D. Zappa, E. Comini, A. Wisitsoraat, G. Sberveglieri, A. Ponzoni, C. Liewhiran, Selective H2S Gas Sensors Based on Ohmic Hetero-Interface of Au-Functionalized WO3 Nanowires, Applied Surface Science, Vol. 571, 2022, pp. 151262, https://doi.org/10.1016/j.apsusc.2021.151262.
[15] X. Y. Yang, J. Y. Yuan, L. J. Yue, K. F. Xie, F. L. Gong, S. Z. Wei, Y. H. Zhang, Electronic and Surface Structure Engineering of Oxygen Vacancies-Riched WO3 Nanosheets toward Highly Efficient BTEX Sensing, Sensors and Actuators B: Chemical, Vol. 405, 2024, pp. 135357, https://doi.org/10.1016/j.snb.2024.135357.
[16] Y. Qiu, Y. Wang, Synthesis, Growth Kinetics and Ultra-sensitive Performance of Electrospun WO3 Nanofibers for NO2 Detection, Applied Surface Science, Vol. 608, 2023, pp. 155112, https://doi.org/10.1016/j.apsusc.2022.155112.
[17] S. Zeb, X. Peng, G. Yuan, X. Zhao, C. Qin, G. Sun, Y. Nie, Y. Cui, X. Jiang, Controllable Synthesis of Ultrathin WO3 Nanotubes and Nanowires with Excellent Gas Sensing Performance, Sensors and Actuators B: Chemical, Vol. 305, 2020, pp. 127435, https://doi.org/10.1016/j.snb.2019.127435.
[18] J. Li, X. Mo, K. Zhang, S. Ali, Z. Liu, P. Cheng, Y. Li, K. Sun, Y. Fu, Y. Wang, E. Xie, Ru Modulates the Catalytic Activity of Pt to Modify WO3 Nanowires for High-performance Hydrogen Sensing at Near Room Temperature, Applied Surface Science, Vol. 615, 2023, pp. 156286, https://doi.org/10.1016/j.apsusc.2022.156286.
[19] S. Zhang, B. Zhang, W. Li, Y. Dong, Y. Ni, P. Yu, J. Liang, N. Y. Kim, J. Wang, Electrospun Copper-doped Tungsten Oxide Nanowires for Triethylamine Gas Sensing, Vacuum, Vol. 215, 2023, pp. 112377, https://doi.org/10.1016/j.vacuum.2023.112377.
[20] S. Singh, P. Gurawal, G. Malik, R. Adalati, D. Kaur, R. Chandra, Highly Responsive and Selective NO Gas Sensing Based on Room Temperature Sputtered Nanocrystalline WO3/Si Thin Films, Micro and Nanostructures. Vol. 188, 2024, pp. 207794, https://doi.org/10.1016/j.micrna.2024.207794.
[21] A. Yadav, A. Sharma, V. Baloria, P. Singh, G. Gupta, Ultrahigh Sensitive NO Sensor Based on WO3 Film with Ppb-level Sensitivity, Ceramics International, Vol. 49, 2023, pp. 7853-7860, https://doi.org/10.1016/j.ceramint.2022.10.284.
[22] S. Singh, J. Deb, U. Sarkar, S. Sharma, MoS2/WO3 Nanosheets for Detection of Ammonia, ACS Applied Nano Materials, Vol. 4, 2021, pp. 2594-2605, https://doi.org/10.1021/acsanm.0c03239.
[23] N. V. Toan, C. M. Hung, N. V. Duy, N. D. Hoa, D. T. T. Le, N. V. Hieu, Bilayer SnO2–WO3 Nanofilms for Enhanced NH3 Gas Sensing Performance, Materials Science and Engineering B: Solid-State Materials Advanced Technology, Vol. 224, 2017, pp. 163-170, https://doi.org/10.1016/j.mseb.2017.08.004.
[2] T. Wang, Q. Xing, R. Zhai, T. Huang, P. Song, Defect Engineering for SnO2 Improves NO2 Gas Sensitivity by Plasma Spraying, ACS Sensors, Vol. 9, 2024, pp. 3178-3186, https://doi.org/10.1021/acssensors.4c00485.
[3] Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based Nanomaterials in Gas Sensors, Solid State Ionics, Vol. 360, 2021, pp. 115544, https://doi.org/10.1016/j.ssi.2020.115544.
[4] T. T. Le Dang, T. N. T. Do, V. M. Do, M. Tonezzer, V. D. N. Tran, T. X. Chu, M. H. Chu, V. D. Nguyen, D. H. Nguyen, Eco-friendly Facile Synthesis of Co3O4–Pt Nanorods for Ethylene Detection towards Fruit Quality Monitoring, Sensors and Actuators A: Physical, Vol. 362, 2023, pp. 114607, https://doi.org/10.1016/j.sna.2023.114607.
[5] N. H. Tan, D. T. T. Le, T.T. Hoang, N. M. Duy, M. Tonezzer, C. T. Xuan, N. V. Duy, N. D. Hoa, Metal-decorated Indium Oxide Nanofibers Used as Nanosensor for Triethylamine Sensing towards Seafood Quality Monitoring, Colloids Surfaces A Physicochemical Engineering Aspects, Vol. 703, 2024, pp. 135268, https://doi.org/10.1016/j.colsurfa.2024.135268.
[6] J. Zhang, T. Shao, J. Dong, G. Li, J. Liu, Y. Liu, R. Yang, J. Gao, L. Li, Y. Jia, L. Zhang, H. Lu, Construction of Mesoporous WO3 Nanofibers Functionalized with Nanoscale PtO Catalysts for Enhanced Acetone Sensing Properties, J. Alloys Compounds, Vol. 933, 2023, pp. 2-10, https://doi.org/10.1016/j.jallcom.2022.167703.
[7] I. Cho, J. Ko, D. D. O. Henriquez, D. Yang, I. Park, Recent Advances in 1D Nanostructure Assembly and Direct Integration Methods for Device Applications, Small Methods, Vol. 2400474, 2024, pp. 1-30, https://doi.org/10.1002/smtd.202400474.
[8] T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional Metal-oxide-based Heterostructural Gas-sensing Materials: A Review, Sensors and Actuators B: Chemical, Vol. 221, 2015, pp. 1570-1585, https://doi.org/10.1016/j.snb.2015.08.003.
[9] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one Dimensional Metal Oxide Semiconductors: Preparation, Characterization and Application as Chemical Sensors, Progress in Materials Science, Vol. 54, 2009, pp. 1-67, https://doi.org/10.1016/j.pmatsci.2008.06.003.
[10] C. I. Ossai, N. Raghavan, Nanostructure and Nanomaterial Characterization, Growth Mechanisms, and Applications, Nanotechnology Review, Vol. 7, 2018, pp. 209-231, https://doi.org/10.1515/ntrev-2017-0156.
[11] W. Smok, T. Tański, A Short Review on Various Engineering Applications of Electrospun One-Dimensional Metal Oxides, Materials (Basel), Vol. 14, 2021, pp. 5139, https://doi.org/10.3390/ma14185139.
[12] P. Karnati, S. Akbar, P. A. Morris, Conduction Mechanisms in One Dimensional Core-shell Nanostructures for Gas Sensing: A Review, Sensors and Actuators B: Chemical, Vol. 295, 2019, pp. 127-143, https://doi.org/10.1016/j.snb.2019.05.049.
[13] J. Zhang, D. Leng, L. Zhang, G. Li, F. Ma, J. Gao, H. Lu, B. Zhu, Porosity and Oxygen Vacancy Engineering of Mesoporous WO3 Nanofibers for Fast and Sensitive Low-Temperature NO2 Sensing, J. Alloys and Compounds, Vol. 853, 2021, pp. 157339, https://doi.org/10.1016/j.jallcom.2020.157339.
[14] M. Punginsang, D. Zappa, E. Comini, A. Wisitsoraat, G. Sberveglieri, A. Ponzoni, C. Liewhiran, Selective H2S Gas Sensors Based on Ohmic Hetero-Interface of Au-Functionalized WO3 Nanowires, Applied Surface Science, Vol. 571, 2022, pp. 151262, https://doi.org/10.1016/j.apsusc.2021.151262.
[15] X. Y. Yang, J. Y. Yuan, L. J. Yue, K. F. Xie, F. L. Gong, S. Z. Wei, Y. H. Zhang, Electronic and Surface Structure Engineering of Oxygen Vacancies-Riched WO3 Nanosheets toward Highly Efficient BTEX Sensing, Sensors and Actuators B: Chemical, Vol. 405, 2024, pp. 135357, https://doi.org/10.1016/j.snb.2024.135357.
[16] Y. Qiu, Y. Wang, Synthesis, Growth Kinetics and Ultra-sensitive Performance of Electrospun WO3 Nanofibers for NO2 Detection, Applied Surface Science, Vol. 608, 2023, pp. 155112, https://doi.org/10.1016/j.apsusc.2022.155112.
[17] S. Zeb, X. Peng, G. Yuan, X. Zhao, C. Qin, G. Sun, Y. Nie, Y. Cui, X. Jiang, Controllable Synthesis of Ultrathin WO3 Nanotubes and Nanowires with Excellent Gas Sensing Performance, Sensors and Actuators B: Chemical, Vol. 305, 2020, pp. 127435, https://doi.org/10.1016/j.snb.2019.127435.
[18] J. Li, X. Mo, K. Zhang, S. Ali, Z. Liu, P. Cheng, Y. Li, K. Sun, Y. Fu, Y. Wang, E. Xie, Ru Modulates the Catalytic Activity of Pt to Modify WO3 Nanowires for High-performance Hydrogen Sensing at Near Room Temperature, Applied Surface Science, Vol. 615, 2023, pp. 156286, https://doi.org/10.1016/j.apsusc.2022.156286.
[19] S. Zhang, B. Zhang, W. Li, Y. Dong, Y. Ni, P. Yu, J. Liang, N. Y. Kim, J. Wang, Electrospun Copper-doped Tungsten Oxide Nanowires for Triethylamine Gas Sensing, Vacuum, Vol. 215, 2023, pp. 112377, https://doi.org/10.1016/j.vacuum.2023.112377.
[20] S. Singh, P. Gurawal, G. Malik, R. Adalati, D. Kaur, R. Chandra, Highly Responsive and Selective NO Gas Sensing Based on Room Temperature Sputtered Nanocrystalline WO3/Si Thin Films, Micro and Nanostructures. Vol. 188, 2024, pp. 207794, https://doi.org/10.1016/j.micrna.2024.207794.
[21] A. Yadav, A. Sharma, V. Baloria, P. Singh, G. Gupta, Ultrahigh Sensitive NO Sensor Based on WO3 Film with Ppb-level Sensitivity, Ceramics International, Vol. 49, 2023, pp. 7853-7860, https://doi.org/10.1016/j.ceramint.2022.10.284.
[22] S. Singh, J. Deb, U. Sarkar, S. Sharma, MoS2/WO3 Nanosheets for Detection of Ammonia, ACS Applied Nano Materials, Vol. 4, 2021, pp. 2594-2605, https://doi.org/10.1021/acsanm.0c03239.
[23] N. V. Toan, C. M. Hung, N. V. Duy, N. D. Hoa, D. T. T. Le, N. V. Hieu, Bilayer SnO2–WO3 Nanofilms for Enhanced NH3 Gas Sensing Performance, Materials Science and Engineering B: Solid-State Materials Advanced Technology, Vol. 224, 2017, pp. 163-170, https://doi.org/10.1016/j.mseb.2017.08.004.