Nguyen Van Phu, Bui Van-Anh, Phan Hoang Anh, Tran Thanh Hang, Thanh Pham Van, Chun Ping-jen, Bui Thanh Tung, Do Quang Loc, Chu Duc Trinh

Main Article Content

Abstract

: In this work, a microfluidic platform integrating magnetophoresis for the separation of A549 lung cancer cells from HeLa cervical cancer cells was developed. The platform was utilized with the lateral magnetophoresis, leveraging ferromagnetic strips embedded in the microchannel to generate magnetic gradients. A549 cells, labeled with magnetic beads (MBs), were selectively deflected under magnetic force, while unlabeled HeLa cells followed the default hydrodynamic path. The separation chamber was designed to direct magnetic-labeled cells to the target outlet and unlabeled cells to the non-target outlet. Experimental results showed that the efficiency of A549 cell separation increased progressively over time, reaching up to 84.4% with minimal contamination from HeLa cells. This enhancement is attributed to the gradual stabilization of flow and internal conditions within the microchannel, enabling more consistent cell deflection and collection. These findings demonstrate the platform’s capability for high-purity cell sorting and highlight its strong potential for integration into lab-on-a-chip systems for cancer diagnostics and therapeutic monitoring at the point of care.


 

Keywords: Microfluidic platform, Magnetophoresis, Cell separation, Magnetic nanobeads (MNBs), cancer diagnostics.

References

[1] R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2020, CA: A Cancer Journal for Clinicians, Vol. 70, No. 1, 2020, pp. 7-30, https://doi.org/10.3322/caac.21590.
[2] C. A. Panabières, K. Pantel, Challenges in Circulating Tumour Cell Research, Nature Reviews Cancer, Vol. 14, No. 9, 2014, pp. 623-631, https://doi.org/10.1038/nrc3820.
[3] C. Li, H. Wang, Y. Jiang, W. Fu, X. Liu, R. Zhong, B. Cheng, F. Zhu, Y. Xiang, J. He, W. Liang, Advances in Lung Cancer Screening and Early Detection, Cancer Biol. Med., Vol. 19, No. 5, 2022, pp. 591-608, https://doi.org/10.20892/j.issn.2095-3941.2021.0690.
[4] X. Fan, I. M. White, Optofluidic Microsystems for Chemical and Biological Analysis, Nature Photonics, Vol. 5, No. 10, 2011, pp. 591-597, https://doi.org/10.1038/nphoton.2011.206.
[5] G. Vona et al., Isolation by Size of Epithelial Tumor Cells, The American Journal of Pathology, Vol. 156, No. 1, 2000, pp. 57-63, https://doi.org/10.1016/S0002-9440(10)64706-2.
[6] B. Mostert, S. Sleijfer, J. A. Foekens, J. W. Gratama, Circulating Tumor Cells (CTCs): Detection Methods and their Clinical Relevance in Breast Cancer, Cancer Treatment Reviews, Vol. 35,
No. 5, 2009, pp. 463-474, https://doi.org/10.1016/j.ctrv.2009.03.004.
[7] R. Pethig, Dielectrophoresis: Status of the Theory, Technology, and Applications, Biomicrofluidics, Vol. 4, No. 2, 2010, https://doi.org/10.1063/1.3456626.
[8] S. Riethdorf, H. Fritsche, V. Müller, T. Rau, C. Schindlbeck, B. Rack, W. Janni, C. Coith, K. Beck, F. Jänicke, S. Jackson, T. Gornet, M. Cristofanilli, K. Pantel, Detection of Circulating Tumor Cells In Peripheral Blood of Patients with Metastatic Breast Cancer: A Validation Study of the Cellsearch System, Clinical Cancer Research, Vol. 13, No. 3, 2007, pp. 920-928, https://doi.org/10.1158/1078-0432.CCR-06-1695.
[9] S. Miltenyi, W. Müller, W. Weichel, A. Radbruch, High Gradient Magnetic Cell Separation with MACS, Cytometry, Vol. 11, No. 2, 1990, pp. 231-238, https://doi.org/10.1002/cyto.990110203.
[10] D. Lin, L. Shen, M. Luo, K. Zhang, J. Li, Q. Yang, F. Zhu, D. Zhou, S. Zheng, Y. Chen, J. Zhou, Circulating Tumor Cells: Biology and Clinical Significance, Signal Transduction and Targeted Therapy, Vol. 6, No. 1, 2021, Article number: 404, https://doi.org/10.1038/s41392-021-00817-8.
[11] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, D. D. Carlo, Label-free Cell Separation and Sorting in Microfluidic Systems, Analytical and Bioanalytical Chemistry, Vol. 397, No. 8, 2010, pp. 3249-3267, https://doi.org/10.1007/s00216-010-3721-9.
[12] M. Xu, H. Zhao, J. Chen, W. Liu, E. Li, Q. Wang, L. Zhang, An Integrated Microfluidic Chip and Its Clinical Application for Circulating Tumor Cell Isolation and Single‐Cell Analysis, Cytometry Part A, Vol. 97, No. 1, 2020, pp. 46-53, https://doi.org/10.1002/cyto.a.23902.
[13] K. A. Hyun, K. Kwon, H. Han, S. I. Kim, H. I. Jung, Microfluidic Flow Fractionation Device for Label-Free Isolation of Circulating Tumor Cells (CTCs) from Breast Cancer Patients, Biosensors and Bioelectronics, Vol. 40, No. 1, 2013, pp. 206-212, https://doi.org/10.1016/j.bios.2012.07.021.
[14] M. M. Ferreira, V. C. Ramani, S. S. Jeffrey, Circulating Tumor Cell Technologies, Molecular Oncology, Vol. 10, No. 3, 2016, pp. 374-394, https://doi.org/10.1016/j.molonc.2016.01.007.
[15] K.I. Cima, C. W. Yee, F. S. Iliescu, W. M. Phyo, K. H. Lim, C. Iliescu, M. H. Tan, Label-free Isolation of Circulating Tumor Cells in Microfluidic Devices: Current Research and Perspectives, Biomicrofluidics, Vol. 7, No. 1, 2013, Article ID: 011810, https://doi.org/10.1063/1.4780062.
[16] N. Lu, H. M. Tay, C. Petchakup, L. He, L. Gong, K. K. Maw, S. Y. Leong, W. W. Lok, H. B. Ong, R. Guo, K. H. H. Li, H. W. Hou, Label-free microfluidic cell sorting and detection for rapid blood analysis, Lab on a Chip, Vol. 23, 2023, pp. 1226–1257, https://doi.org/10.1039/D2LC00904H.
[17] M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. M. M. Terstappen, D. F. Hayes, Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer, New England Journal of Medicine,
Vol. 351, No. 8, 2004, pp. 781-791, https://doi.org/10.1056/NEJMoa040766.
[18] L. Luo, Y. He, Magnetically Driven Microfluidics for Isolation of Circulating Tumor Cells, Cancer Medicine, Vol. 9, No. 12, 2020, pp. 4207, https://doi.org/10.1002/cam4.3077.
[19] J. Lee, O. Sul, S. B. Lee, Enrichment of Circulating Tumor Cells from Whole Blood Using a Microfluidic Device for Sequential Physical and Magnetophoretic Separations, Micromachines, Vol. 11, No. 5, 2020, pp. 481, https://doi.org/10.3390/mi11050481.
[20] Z. Qiao, X. Teng, A. Liu, W. Yang, Novel Isolating Approaches to Circulating Tumor Cell Enrichment Based on Microfluidics: A Review, Micromachines, Vol. 15, No. 6, 2024, pp. 706, https://doi.org/10.3390/mi15060706.
[21] N. Pamme, Magnetism and Microfluidics, Lab on a Chip, Vol. 6, No. 1, 2006, pp. 24-38, https://doi.org/10.1039/b513005k.
[22] C. W. Shields IV, C. D. Reyes, G. P. López, Microfluidic Cell Sorting: A review of the Advances In The Separation Of Cells From Debulking To Rare Cell Isolation, Lab on a Chip, Vol. 15, No. 5, 2015, pp. 1230-1249, https://doi.org/10.1039/c4lc01246a.
[23] J. H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, D. E. Ingber, A Combined Micromagnetic-Microfluidic Device for Rapid Capture and Culture of Rare Circulating Tumor Cells, Lab on a Chip, Vol. 12, No. 12, 2012, pp. 2175, https://doi.org/10.1039/c2lc40072c.
[24] M. Xavier, R. O. C. Oreffo, H. Morgan, Skeletal Stem Cell Isolation: A Review on the State-of-the-art Microfluidic Label-free Sorting Techniques, Biotechnology Advances, Vol. 34, No. 5, 2016, pp. 908-923, https://doi.org/10.1016/j.biotechadv.2016.05.008.
[25] M. Strozyk, Gold Nanoparticles in Polymeric Matrices for Biomedical Applications, 2017.
[26] T. Jung, Y. R. Yun, J. Bae, S. Yang, Rapid Bacteria-Detection Platform Based on Magnetophoretic Concentration, Dielectrophoretic Separation, and Impedimetric Detection, Analytica Chimica Acta, Vol. 1173, 2021, pp. 338696, https://doi.org/10.1016/j.aca.2021.338696.
[27] I. Petruzzellis, R. M. Vázquez, S. Caragnano, C. Gaudioso, R. Oselame, A. Ancona, A. Volpe, Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels, Micromachines, Vol. 15, No. 9, 2024, pp. 1135, https://doi.org/10.3390/mi15091135.