Multivariate Assessment of Nutrient Absorption and Soil-to-Plant Transfer Factors in Moc Chau Crops Using k₀-INAA
Main Article Content
Abstract
Absorption and accumulation of nutrients in various crop species in Moc Chau town in Son La province of Vietnam, have been examined using multivariate analysis. The nutrient concentration in soil decreases in the following order: K > Fe > Na > Mn > Zn > Rb. Crops prioritize the absorption of nutrients based on their growth requirements, with potassium (K) being the most abundant nutrient in the plants, followed by trace elements such as iron (Fe), sodium (Na), manganese (Mn), zinc (Zn), and rubidium (Rb). The average transfer coefficients for K, Fe, Na, Mn, Zn, and Rb are 2.91, 0.00307, 0.45, 0.037, 0.15, and 0.22, respectively. Multivariate analysis indicates that the ability to absorb and accumulate elements are species-dependent, highlighting the influence of plant type. The findings imply that plants within the same group require similar fertilization and soil treatment strategies.
References
[2] M. Greger, Uptake of Nuclides by Plants, Technical Report TR-04-14, Department of Botany, Stockholm University, 2004.
[3] A. C. Rancher, W. F. Christensen, Methods of Multivariate Analysis, Wiley Series in Probability and Statistics, First Edition, Wiley, 2012.
[4] A. P. Dempster, An Overview of Multivariate Data Analysis, Journal of Multivariate Analysis, Vol. 1, 1971,
pp. 316-346, https://doi.org/10.1016/0047-259X(71)90006-6.
[5] K. P. Pradhoshini, B. Santhanabharathi, M. Priyadharshini, M. S. Ahmed, K. Murugan, P. Sivaperumal, L. Alam, D. V. Hao, M. S. Musthafa, Microbial Consortium and Impact of Industrial Mining on the Natural High Background Radiation Area (NHBRA), India – Characteristic Role of Primordial Radionuclides in Influencing the Community Structure and Extremophiles Pattern, Environmental Research, Vol. 244, 2024, Article 118000, https://doi.org/10.1016/j.envres.2023.118000.
[6] V. N. Ba, B. N. Thien, H. T. Phuong, T. T. H. Loan, T. T. Anh, Bioconcentration and Translocation of Elements from Soil to Vegetables and Associated Health Risk, Journal of Food Composition and Analysis, Vol. 132, 2024, Article 106296, https://doi.org/10.1016/j.jfca.2024.106296.
[7] P. Yang, M. Yang, R. Mao, H. Shao, Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China, The Scientific World Journal, 2014, Article 517020, https://doi.org/10.1155/2014/517020.
[8] I. Shtangeeva, D. Alber, G. Bukalis, B. Stanik, F. Zepezauer, Multivariate Statistical Analysis of Nutrients and Trace Elements in Plants and Soil from Northwestern Russia, Plant and Soil, Vol. 322, 2009, pp. 219-228, http://dx.doi.org/10.1007/s11104-009-9910-7.
[9] B. N. Thien, V. N. Ba, M. T. Man, T. T. H. Loan, Analysis of the Soil to Food Crops Transfer Factor and Risk Assessment of Multi-Elements at the Suburban Area of Ho Chi Minh City, Vietnam Using Instrumental Neutron Activation Analysis (INAA), Journal of Environmental Management, Vol. 291, 2021, Article 112637, https://doi.org/10.1016/j.jenvman.2021.112637.
[10] Z. Wang, D. Jia, S. Song, J. Sun, Assessments of Surface Water Quality Through the Use of Multivariate Statistical Techniques: A Case Study for the Watershed of the Yuqiao Reservoir, China, Frontiers in Environmental Science, Vol. 11, 2024, https://doi.org/10.3389/fenvs.2023.1107591.
[11] J. Osei, F. Nyame, T. Armah, S. Osae, S. Dampare, J. R. Fianko, Application of Multivariate Analysis for Identification of Pollution Sources in the Densu Delta Wetland in the Vicinity of a Landfill Site in Ghana, Journal of Water Resource and Protection, Vol. 2, 2010, pp. 1020-1029, http://dx.doi.org/10.4236/jwarp.2010.212122.
[12] A. Ibrahim, H. Juahir, M. Toriman, A. Mustapha, A. Azid, H. Isiyaka, Assessment of Surface Water Quality Using Multivariate Statistical Techniques in the Terengganu River Basin, Malaysia, Journal of Analytical Sciences,
Vol. 19, 2015, pp. 338-348.
[13] N. K. Quynh, T. V. The, L. V. Luu, Vietnam Agricultural Science Institute Project: Report on Participatory Rural Environmental Management in the Northern Upland Areas (Moc Chau District, Son La Province), Hanoi, Vietnam, 2003 (in Vietnamese).
[14] B. T. Hong, B. V. Loat, D. V. Hao, D. T. Thang, L. N. Thiem, T. D. Khoa, T. V. Khanh, H. T. T. Linh, P. T. T. Giang, T. V. Hoang, H. V. Khanh, T. H. Nam, Transfer of Natural Radionuclides from Soil to Water Spinach (Ipomoea Aquatica Forssk) under Flooded and Unflooded Conditions in Hanoi, Vietnam, Journal of Environmental Radioactivity, Vol. 277, 2024, Article 107445, https://doi.org/10.1016/j.jenvrad.2024.107445.
[15] S. Said, H. Bounouira, H. Amsil, I. Aarab, A. Badague, S. El Basraoui, A. Moussaif, B. Benazzouz, Major and Trace Elements Determination in Organic and Conventional Moroccan Vegetables Using the k0-Standardisation Method of Neutron Activation Analysis, Nuclear Analysis, Vol. 3, 2024, Article 100127, https://doi.org/10.1016/j.nucana.2024.100127.
[16] L. Hamidatou, H. Slamene, T. Akhal, B. Zouranen, Concepts, Instrumentation and Techniques of Neutron Activation Analysis, in Imaging and Radioanalytical Techniques in Interdisciplinary Research – Fundamentals and Cutting Edge Applications, IntechOpen, 2013, http://dx.doi.org/10.5772/53686.
[17] M. Blaauw, G. D’Agostino, M. Di Luzio, H. M. Dung, R. Jacimovic, M. Da Silva Dias, The 2021 IAEA Software Intercomparison for k0-INAA, Journal of Radioanalytical and Nuclear Chemistry, Vol. 332, 2023, pp. 3387-3400, https://doi.org/10.1007/s10967-022-08626-1.
[18] International Atomic Energy Agency, Use of Research Reactors for Neutron Activation Analysis, IAEA-TECDOC-1215, Vienna, 2001.
[19] J. Y. Kim, J. H. Lee, A. Kunhikrishnan, D. W. Kang, M. J. Kim, J. H. Yoo, Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products, Korean Journal of Environmental Agriculture, Vol. 31, 2012, http://dx.doi.org/10.1101/gr.089417.108.
[20] N. Mirecki, R. Agic, L. Šunić, L. Milenkovic, Z. Ilic, Transfer Factor as Indicator of Heavy Metals Content in Plants, Fresenius Environmental Bulletin, Vol. 24, 2015, pp. 4212-4219.
[21] A. Yaroshevsky, Abundances of Chemical Elements in the Earth’s Crust, Geochemistry International, Vol. 44, 2006, pp. 48-55.
[22] N. V. Bo, B. D. Dinh, H. Q. Duc, B. H. Hien, D. T. Loc, T. Phien, N. V. Ty, The Basic Information of Main Soil Units of Vietnam, The Gioi Publishers, Hanoi, 2002.
[23] N. V. Breemen, P. Buurman, Ferralitization, in Soil Formation, Springer Netherlands, Dordrecht, New York, 2002, pp. 121-158.
[24] M. Kulkarni, Trace Elements in Soils and Plants, South African Journal of Botany, Vol. 80, 2012, pp. 1-10, https://doi.org/10.1016/j.sajb.2012.03.008.
[25] N. Gupta, K. K. Yadav, V. Kumar, S. Kumar, R. P. Chadd, A. Kumar, Trace Elements in Soil-Vegetables Interface: Translocation, Bioaccumulation, Toxicity and Amelioration – A Review, Science of the Total Environment,
Vol. 651, 2019, pp. 2927-2942, https://doi.org/10.1016/j.scitotenv.2018.10.047.
[26] N. P. Thuy, H. Ruppert, T. Pasold, B. Sauer, Paddy Soil Geochemistry, Uptake of Trace Elements by Rice Grains (Oryza sativa) and Resulting Health Risks in the Mekong River Delta, Vietnam, Environmental Geochemistry and Health, Vol. 42, 2020, pp. 2377-2397, https://doi.org/10.1007/s10653-019-00333-3.
[27] N. P. Thuy, H. Ruppert, B. Sauer, T. Pasold, Harmful and Nutrient Elements in Paddy Soils and Their Transfer into Rice Grains (Oryza sativa) Along Two River Systems in Northern and Central Vietnam, Environmental Geochemistry and Health, Vol. 42, 2020, pp. 191-207, https://link.springer.com/article/10.1007/s10653-019-00333-3.
[28] L. Gulan, J. Stajic, B. Milenkovic, T. Zeremski, S. Milić, D. Krstic, Plant Uptake and Soil Retention of Radionuclides and Metals in Vineyard Environments, Environmental Science and Pollution Research, Vol. 28, 2021, https://doi.org/10.1007/s11356-021-14239-0.
[29] J. Tuma, M. Skalicky, L. Tumova, P. Bláhová, M. Rosůlková, Potassium, Magnesium and Calcium Content in Individual Parts of Phaseolus Vulgaris L. Plant as Related to Potassium and Magnesium Nutrition, Plant Soil Environment, Vol. 50, 2004, pp. 18–26. https://doi.org/10.17221/3637-PSE.
[30] P. Shrivastav, M. Prasad, T. Singh, A. Yadav, D. Goyal, A. Ali, P. K. Dantu, Role of Nutrients in Plant Growth and Development, in Contaminants in Agriculture, Springer, 2020, pp. 43–59. http://dx.doi.org/10.1007/978-3-030-41552-5_2.
[31] P. Marschner, Z. Rengel, Nutrient Availability in Soils, in Marschner’s Mineral Nutrition of Plants, Academic Press, 2023, pp. 499–522. https://doi.org/10.1016/B978-0-12-819773-8.00003-4.
[32] R. M. Cornell, U. Schwertmann, The Iron Oxides, 2nd ed., Wiley-VCH, 2003, pp. 433-474.
[33] G. Rout, Role of Iron in Plant Growth and Metabolism, Reviews in Agricultural Science, Vol. 3, 2015, pp. 1-2, http://dx.doi.org/10.7831/ras.3.1.
[34] J. Wang, P. M. Wang, Y. Gu, F. Zhao, P. Wang, Iron-Manganese (Oxyhydro) Oxides, Rather than Oxidation of Sulfides, Determine the Mobilization of Cd During Soil Drainage in Paddy Soil Systems, Environmental Science & Technology, Vol. 53, 2019, pp. 1234-1245, https://pubs.acs.org/doi/abs/10.1021/acs.est.8b06863.
[35] J. Morrissey, M. Guerinot, Iron Uptake and Transport in Plants: The Good, the Bad, and the Ionome, Chemical Reviews, Vol. 109, 2009, pp. 4553-4567.
[36] H. T. Phuong, V. N. Ba, B. N. Thien, T. T. H. Loan, Accumulation and Distribution of Nutrients, Radionuclides and Metals by Roots, Stems and Leaves of Plants, Nuclear Engineering and Technology, Vol. 55, 2023,
pp. 2650-2655, https://doi.org/10.1016/j.net.2023.03.039.
[37] O. A. Culicov, A. Pantelica, A. Ene, M. Gugiu, C. Ciortea, O. Constantinescu, INAA and PIXE Comparison on Some Vegetable Species, Romanian Reports in Physics, Vol. 63, 2011, pp. 997-1008.
[38] J. O. Miller, Soil pH Affects Nutrient Availability, University of Maryland Extension, 2016, https://doi.org/10.13016/M2PN59.
[39] N. J. Barrow, A. E. Hartemink, The Effects of pH on Nutrient Availability Depend on Both Soils and Plants, Plant and Soil, Vol. 487, 2023, pp. 21-37, https://doi.org/10.1007/s11104-023-05960-5.
[40] J. Duminil, M. D. Michele, Plant Species Delimitation: A Comparison of Morphological and Molecular Markers, Plant Biosystems, Vol. 143, 2009, pp. 528-542, https://doi.org/10.1080/11263500902722964.