Study of Thermodynamic Properties and Melting Curves of HP2 Structure Thallium Metal Under Extreme Conditions
Main Article Content
Abstract
Thermodynamic properties are important to understand and simulate thermodynamic processes, calculate and predict temperature, efficiency changes, improve energy efficiency in industrial systems. In this work, we studied the effect of pressure on several thermodynamic quantities including Debye frequency, Debye temperature, and Debye-Waller factor of HP2-structured Thallium (Tl) metal in which we considered the effect of non-ideal c/a axis ratio using a semi-empirical method. The correlation shift function in the X-ray absorption fine structure spectrum was determined on the basis of the Debye-Waller factor. The effective interaction potential between scattering and absorbing atoms with other neighboring atoms was approximately determined by the contribution of neighboring atoms to the fourth coordination sphere. Applying the Debye model, we obtain the volume (pressure) dependent analytical expressions of thermodynamic quantities including Debye frequency, Debye temperature, Debye - Waller factor. In addition, we have combined the Debye model and Lindemann melting law to determine the melting temperature of Tl metal. The previous experimental parameters are introduced by us to numerically calculate these thermodynamic quantities up to a pressure of 50 GPa. The melting curve of Tl according to our calculations is compared with compared with previous theoretical and experimental results and show good agreement. This study not only provides additional data on the thermodynamic properties of Tl metal but can also be applied to calculate other metals and alloys under extreme conditions.
References
[2] S. Japel, B. Schwager, R. Boehler, M. Ross, Melting of Copper and Nickel at High Pressure: The Role of Electrons, Phys. Rev. Lett., Vol. 95, No. 16, 2005, pp. 1-4, https://doi.org/10.1103/PhysRevLett.95.167801.
[3] S. G. Nielsen, M. Rehkämper, J. Prytulak, Investigation and Application of Thallium Isotope Fractionation, Rev. Mineral. Geochemistry, Vol. 82, 2017, pp. 18, https://doi.org/10.2138/rmg.2017.82.18.
[4] N. V. Hung, T. S. Tien, N. B. Duc, D. Q. Vuong, High-order Expand XAFS Debye Waller Factors HCP Crystala Based on Classical Anharmonic Correlated Einstein Model, Vol. 28, No. 21, 2014, pp. 1450174, https://doi.org/10.1142/S0217984914501747.
[5] C. J. Wu, P. Söderlind, J. N. Glosli, J. E. Klepeis, Shear-induced Anisotropic Plastic Flow from Body-Centred-Cubic Tantalum before Melting, Nature Materials, Vol. 8, No. 3, 2009, pp. 223-228,
https://doi.org/ 10.1038/nmat2375.
[6] L. Burakovsky, L. Preston, Analytic Model of the Grüneisen Parameter all Densities, J. Phys. Chem. Solids, Vol. 65, No. 8-9, 2004, pp. 1581-1587, https://doi.org/10.1016/j.jpcs.2003.10.076.
[7] A. B. Belonoshko et al., Molybdenum at High Pressure and Temperature: Melting from Another Solid Phase, Physical Review Letters, Vol. 100, No. 13. 2008, https://doi.org/10.1103/PhysRevLett.100.135701.
[8] T. D. Cuong, N. Q. Hoc, N. D. Trung, N. T. Thao, D. P. Anh, Theoretical Predictions of Melting Behaviors of hcp Iron up to 4000 GPa, Phys. Rev. B, Vol. 106, 2022, pp. 094103, https://doi.org/10.1103/PhysRevB.106.094103
[9] M. Ross, R. Boehler, D. Errandonea, Melting of Transition Metals at High Pressure and The Influence of Liquid Frustration: The Late Metals Cu, Ni, and Fe, Physical Review B - Condensed Matter and Materials Physics,
Vol. 76, No. 18. 2007, https://doi.org/ 10.1103/PhysRevB.76.184117.
[10] T. S. Tien, Analysis of Temperature-dependent Extended X-ray Absorption Fine Structure Oscillation of Distorted Crystalline Cadmium, Commun. Phys., Vol. 32, No. 4, 2022, pp. 401-412,
https://doi.org/10.15625/0868-3166/16890.
[11] J. S. Olsen, L. Gerward, S. Steenstrup, E. Johnson, A High-Pressure Study of Thallium, J. Appl. Crystals, Vol. 27, No. 6, 1994, pp. 1002-1005, https://doi.org/10.1107/S002188989400720X.
[12] B. P. Grad, R. B. Moore, EXAFS Studies of Various Sulfonated and Carboxylated Cadmium Ionomers, Am. Chem. Soc., Vol. 29, 1996, pp. 1685-1690, https://doi.org/10.1021/ma951058e.
[13] Y. Fujinaga, Y. Syono, The cadmium-zinc phase diagram under high pressure. High Pressure Research, High Press. Res., Vol. 15, No. 4, 1997, pp. 233-243, https://doi.org/10.1080/08957959708244244.
[14] I. F. Vasconcelos, E. A. Haack, P. A. Maurice, A. B. Bunker, EXAFS Analysis of Cadmium(II) Adsorption to Kaolinite Igor, Chem. Geol., Vol. 249, 2008, pp. 237-249, https://doi.org/10.1016/j.chemgeo.2008.01.001.
[15] M. A. Marcus, W. Flood, M. Stiegerwald, L. Brus, M. Bawendi, Structure of Capped CdSe Clusters by EXAFS, Journal of Physical Chemistry, Vol. 95, No. 4. 1991, pp. 1572–1576, https://doi.org/10.1021/j100157a012.
[16] A. Carter, C. Bouldin, Surface Structure of Cadmium Selenide Nanocrystallites, Physical Review B-Condensed Matter and Materials Physics, Vol. 55, No. 20. 1997, pp. 13822-13828, https://doi.org/10.1103/PhysRevB.55.13822.
[17] B. K. Godwal, S. V. Raju, Z. Geballe, R. Jeanloz, Electronic Phase Transitions in Cadmium at High Pressures, J. Phys. Conf. Ser., Vol. 337, 2012, pp. 012033, https://doi.org/10.1088/1742-6596/377/1/012033.
[18] P. G. P. S. Kulsum et al., A State of The Art Review on Cadmium Uptake, Toxicity and Tolerance in Rice: from Physiological Response to Remediation Process, Environ. Res., Vol. 220, 2023, pp. 115098, https://doi.org/10.1016/j.envres.2022.115098.
[19] R. M. Alshegaihi et al., Effective Citric Acid and EDTA Treatments in Cadmium Stress Tolerance in Pepper (Capsicum annuum L.) Seedlings by Regulating Specific Gene Expression, South African J. Bot., Vol. 159, 2023, pp. 367-380, https://doi.org/10.1016/j.sajb.2023.06.024.
[20] K. Kotmool et al., High Pressure Induced Distortion in Face Centered Cubic Phase of Thallium, Proc. Natl. Acad. Sci., Vol. 113, No. 40, 2016, pp. 11143-11147, https://doi.org/10.1073/pnas.1612468113.
[21] P. D. Pathak, R. J. Desai, Thermal Properties of Some HCP Metals, Physica Status Solidi (a), Vol. 62, No. 2, 1980, pp. 625-629, https://doi.org/10.1002/pssa.2210620234.
[22] M. L. McDaniel, S. E. Babb, G. J. Scott, Melting Curves of Five Metals under High Pressure, J. Chem. Phys.,
Vol. 37, No. 4, 1962, pp. 822-828, https://doi.org/10.1063/1.1733167.
[23] J. F. Cannon, Behavior of the Elements at High Pressures, J. Phys. Chern. Ref. Data, Vol. 3, 1974, pp. 781-824, https://doi.org/10.1063/1.3253148.
[24] P. Endla, X-Ray Determination of Debye Temperature and Microhardness of Some HCP Elements Re, Os and Tl, IOP Conf. Ser. Mater. Sci. Eng., Vol. 1119, 2021, pp. 012001, https://doi.org/10.1088/1757-899X/1119/1/012001.
[25] A. Jayaraman, W. Klement, R. C. Newton, and G. C. Kennedy, Fusion Curves and Polymorphic Transitions of the Group III Elements-Aluminum, Gallium, Indium and Thallium-at High Pressures, J. Phys. Chem. Solids, Vol. 24, No. 1, 1963, pp. 7-18, https://doi.org/10.1016/0022-3697(63)90036-2.
[26] O. Schulte and W. B. Holzapfel, Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa, Physical Review B - Condensed Matter and Materials Physics, Vol. 55, No. 13. 1997, pp. 8122-8128, https://doi.org/10.1103/PhysRevB.55.8122.
[27] C. Cazorla, S. G. MacLeod, D. Errandonea, K. A. Munro, M. I. McMahon, and C. Popescu, Thallium Under Extreme Compression, J. Phys. Condens. Matter, Vol. 28, No. 44, 2016, pp. 445401, https://doi.org/10.1088/0953-8984/28/44/445401.
[28] N. V. Hung, R. Frahm and Hi. Kamitsubo, Anharmonic Contributions to High Temperature EXAFS Spectra Theory and Comparison with Experiment, J. Phys. Soc. Jpn., Vol. 65, 1996, pp. 3571, https://doi.org/10.1143/JPSJ.65.3571.
[29] A. V. Poiarkova, J. J. Rehr, Multiple Scattering X-ray Absorption Fine Structure Debye-Waller Factor Calculations, Physical Review B - Condensed Matter and Materials Physics, Vol. 59, No. 2, 1999, pp. 948-957, https://doi.org/ 10.1103/PhysRevB.59.948.
[30] E. A. Stern, P. Livņ, Z. Zhang, Thermal Vibration and Melting From a Local Perspective, Physical Review B,
Vol. 43, No. 11, 1991, pp. 8850-8860, https://doi.org/10.1103/PhysRevB.43.8850.
[31] G. Bunker, Application of the Ratio Method of EXAFS Analysis to Disordered Systems, Nucl. Instruments Methods Phys. Res., Vol. 207, No. 3, 1983, pp. 437-444, https://doi.org/10.1016/0167-5087(83)90655-5.
[32] N. V. Hung, N. B.o Trung, B. Kirchner, Anharmonic Correlated Debye Model Debye-Waller Factors, Phys. B Condens. Matter, Vol. 405, No. 11, 2010, pp. 2519-2525, https://doi.org/10.1016/j.physb.2010.03.013.
[33] J. C. Graf, M. J. Greeff, C. K. Boettger, High-Pressure Debye-Waller and Grüneisen Parameters of Gold and Copper, Vol. 65, 2004, pp. 65-68, https://doi.org/10.1063/1.1780185.
[34] H. K. Hieu, Melting of Solids Under High Pressure, Vacuum, Vol. 109, 2014, pp. 184-186, https://doi.org/10.1016/j.vacuum.2014.07.010.
[35] N. V. Hung, J. Rehr, Anharmonic Correlated Einstein Model Debye-Waller Factors, Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 56, No. 1, 1997, pp. 43-46, https://doi.org/10.1103/PhysRevB.56.43.
[36] Y. Wang, R. Ahuja, B. Johansson, Melting of Iron and Other Metals at Earth’s Core Conditions: A Simplified Computational Approach, Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 65, No. 1, 2001, pp. 1-3, https://doi.org/10.1103/PhysRevB.65.014104.
[37] N. Tsujino, Y. Nishihara, Y. Nakajima, E. Takahashi, K. Funakoshi, Y. Higo, Equation of State of γ-Fe: Reference Density for Planetary Cores, Earth Planet. Sci. Lett., Vol. 375, 2013, pp. 244-253, https://doi.org/10.1016/j.epsl.2013.05.040.
[38] P. Vinet, J. Ferrante, J. H. Rose, J. R. Smith, Compressibility of solids, J. Geophys. Res. Geophys Res, Vol. 92, No. B9, 1987, pp. 9319-9325, https://doi.org/10.1029/JB092iB09p09319.
[39] R. E. Cohen, O. Gülseren, R. J. Hemley, Accuracy of Equation of State Formulations, Am. Mineral., Vol. 85,
No. 2, 2000, pp. 338-344, https://doi.org/10.2138/am-2000-2-312.
[40] G. Singh, R. P. S. Rathore, Generalised Morse Potential for BCC Complex Metals, Vol.135, No. 2, 1986,
pp. 513-518, https://doi.org/10.1002/pssb.2221350208.
[41] N V. Hung, T. S. Tien, L. H. Hung, R. R. Frahm, Anharmonic Effective Potential, Local Force Constant and EXAFS of Crystial: Theory and Comparison to Experiment, Int. J. Mod. Phys. B, Vol. 22, No. 29, 2008,
pp. 5155–5156, https://doi.org/10.1142/S0217979208049285.
[42] E. Purushotham, N.G. Krishna, Mean Square Amplitudes of Vibration and Associated Debye Temperatures of Rhenium, Osmium and Thallium, Phys. B., Vol. 405, 2010, pp. 3308-3311, https://doi.org/10.1016/j.physb.2010.04.066.
[43] B. D. Singh, Y. P. Varshni, X-ray Debye Temperature for Hexagonal Crystals, Acta Cryst, Vol. 38, 1982,
pp. 854-858, https://doi.org/10.1107/S0567739482001740.