Influence of Fabrication Conditions on the Magnetic Properties of MnFe2O4 Nanoparticles Synthesized by Hydrothermal Method
Main Article Content
Abstract
Manganese ferrite (MnFe2O4) nanoparticles have attracted significant research interest due to their unique magnetic properties and diverse applications in high-frequency devices, biomedical systems, and environmental treatment. In this work, we systematically investigated the influence of reaction times (Tr = 1–5 h) and pH values (4–13) on the crystallinity, morphology, and magnetic properties of MnFe2O4 nanoparticles synthesized by hydrothermal method at 150 °C. The samples characterization was carried-out by XRD, Fe-SEM, and VSM measurements. The experimental results demonstrated that optimal conditions were achieved at a pH value of 11 with Tr = 4 h, producing like-spherical nanoparticles with an average size of 25 nm. However, due to some agglomeration, the overall particle size distribution ranged from 15 to 60 nm, with an average size in non-aggregated regions around 40 nm. These nanoparticles exhibited outstanding magnetic properties, including a high saturation magnetization of ~ 57 emu/g, a low coercivity of ~ 22 Oe, and an experimental magnetic moment value of about 2.35 μB. In contrast, lower pH values or varying reaction times led to impurities and reduced magnetic performance. Additionally, the effects of annealing temperatures (200 – 800 °C) on the magnetic properties were explored. These results provide crucial insights into the synthesis-structure-property relationships in MnFe₂O₄ nanoparticles and establish practical guidelines for producing high-quality MnFe2O4 nanoparticles for applications in various fields.
References
[2] S. J. Salih, W. M. Mahmood, Review on Magnetic Spinel Ferrite (MFe2O4) Nanoparticles: From Synthesis to Application, Heliyon, Vol. 9, Iss. 6, 2023, pp. e16601 1-25, https://doi.org/10.1016/j.heliyon.2023.e16601.
[3] N. Akhlaghi, G. N. Darzi, Manganese Ferrite (MnFe2O4) Nanoparticles: From Synthesis to Application - A Review, Journal of Industrial and Engineering Chemistry, Vol. 103, 2021, pp. 292-304, https://doi.org/10.1016/j.jiec.2021.07.043.
[4] E. M. Materón, C. M. Miyazaki, O. Carr, N. Joshi, P. H. S. Picciani, C. J. Dalmaschio, F. Davis, F. M. Shimizu, Magnetic Nanoparticles in Biomedical Applications: A Review, Applied Surface Science Advances, Vol. 6, 2021, pp. 100163 1-17, https://doi.org/10.1016/j.apsadv.2021.100163.
[5] S. E. M. Ghahfarokhi, E. M. Shobegar, Influence of pH on the Structural, Magnetic and Optical Properties of SrFe2O4 Nanoparticles, Journal of Materials Research and Technology, Vol. 9, Iss. 6, 2020, pp. 12177–12186, https://doi.org/10.1016/j.jmrt.2020.08.063.
[6] T. V. Sagar, T. S. Rao, K. C. B. Naidu, Effect of Calcination Temperature on Optical, Magnetic and Dielectric Properties of Sol-Gel Synthesized Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0–0.8), Ceramics International, Vol. 46, Iss. 8, 2020, pp. 11515-11529, https://doi.org/10.1016/j.ceramint.2020.01.178.
[7] N. Boda, G. Boda, K. C. B. Naidu, M. Srinivas, K. M. Batoo, D. Ravinder, A. P. Reddy, Effect of Rare Earth Elements on Low Temperature Magnetic Properties of Ni and Co-Ferrite Nanoparticles, Journal of Magnetism and Magnetic Materials, Vol. 473, 2019, pp. 228-235, https://doi.org/10.1016/j.jmmm.2018.10.023.
[8] A. B. Nawale, N. S. Kanhe, K. R. Patil, S. V. Bhoraskar, V. L. Mathe, A. K. Das, Magnetic Properties of Thermal Plasma Synthesized Nanocrystalline Nickel Ferrite (NiFe2O4), Journal of Alloys and Compounds, Vol. 509,
Iss. 12, 2011, pp. 4404-4413, https://doi.org/10.1016/j.jallcom.2011.01.057.
[9] Z. Zhang, Y. Wang, Q. Tan, Z. Zhong, F. Su, Facile Solvothermal Synthesis of Mesoporous Manganese Ferrite (MnFe2O4) Microspheres as Anode Materials for Lithium-Ion Batteries, Journal of Colloid and Interface Science, Vol. 398, 2013, pp. 185-192, https://doi.org/10.1016/j.jcis.2013.01.067.
[10] D. H. K. Reddy, Y. S. Yun, Spinel Ferrite Magnetic Adsorbents: Alternative Future Materials for Water Purification?, Coordination Chemistry Reviews, Vol. 315, 2016, pp. 90-111, https://doi.org/10.1016/j.ccr.2016.01.012.
[11] K. R. S. Lievanos, J. L. Stair, K. E. Knowles, Cation Distribution in Spinel Ferrite Nanocrystals: Characterization, Impact on their Physical Properties, and Opportunities for Synthetic Control, Inorganic Chemistry, Vol. 60, Iss. 7, 2021, pp. 4291-4305, https://doi.org/10.1021/acs.inorgchem.1c00040.
[12] K. Praveena, H. W. Chen, H. L. Liu, K. Sadhana, S. R. Murthy, Enhanced Magnetic Domain Relaxation Frequency and Low Power Losses in Zn2+ Substituted Manganese Ferrites Potential for High Frequency Applications, Journal of Magnetism and Magnetic Materials, Vol. 420, 2016, pp. 129-142, https://doi.org/10.1016/j.jmmm.2016.07.011.
[13] K. Praveena, K. Sadhana, S. Bharadwaj, S. R. Murthy, Development of Nanocrystalline Mn-Zn Ferrites for High Frequency Transformer Applications, Journal of Magnetism and Magnetic Materials, Vol. 321, Iss. 16, 2009,
pp. 2433-2437, https://doi.org/10.1016/j.jmmm.2009.02.138.
[14] K. Praveena, G. V. J. Gowda, A. E. Denglawey, V. Jagadeesha Angadi, Manganese Ferrite-Polyaniline Nanocomposites for Microwave Absorbers in X Band, Journal of Materials Science: Materials in Electronics,
Vol. 33, Iss. 8, 2022, pp. 5678-5685, https://doi.org/10.1007/s10854-022-07753-5.
[15] A. Doaga, A. M. Cojocariu, W. Amin, F. Heib, P. Bender, R. Hempelmann, O. F. Caltun, Synthesis and Characterizations of Manganese Ferrites for Hyperthermia Applications, Materials Chemistry and Physics,
Vol. 143, Iss. 1, 2013, pp. 305-310, https://doi.org/10.1016/j.matchemphys.2013.08.066.
[16] C. R. Kalaiselvan, S. S. Laha, S. B. Somvanshi, T. A. Tabish, N. D. Thorat, N. K. Sahu, Manganese Ferrite (MnFe2O4) Nanostructures for Cancer Theranostics, Coordination Chemistry Reviews, Vol. 473, 2022,
pp. 214809 1-32, https://doi.org/10.1016/j.ccr.2022.214809.
[17] K. Islam, M. Haque, A. Kumar, A. Hoq, F. Hyder, S. M. Hoque, Manganese Ferrite Nanoparticles (MnFe2O4): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI, Nanomaterials, Vol. 10, Iss. 11, 2020, pp. 1-23, https://doi.org/10.3390/nano10112297.
[18] Z. Szotek, W. M. Temmerman, D. Ködderitzsch, A. Svane, L. Petit, H. Winter, Electronic Structures of Normal and Inverse Spinel Ferrites from First Principles, Physical Review B - Condensed Matter and Materials Physics, Vol. 74, Iss. 17, 2006, pp. 1-12, https://doi.org/10.1103/PhysRevB.74.174431.
[19] K. Vamvakidis, M. Katsikini, D. Sakellari, E. C. Paloura, O. Kalogirou, C. D. Samara, Reducing the Inversion Degree of MnFe2O4 Nanoparticles Through Synthesis to Enhance Magnetization: Evaluation of Their 1H NMR Relaxation and Heating Efficiency, Dalton Transactions, Vol. 43, Iss. 33, 2014, pp. 12754-12765, https://doi.org/10.1039/c4dt00162a.
[20] M. M. Baig, M. A. Yousuf, P. O. Agboola, M. A. Khan, I. Shakir, M. F. Warsi, Optimization of Different Wet Chemical Routes and Phase Evolution Studies of MnFe2O4 Nanoparticles, Ceramics International, Vol. 45, Iss. 10, 2019, pp. 12682–12690, https://doi.org/10.1016/j.ceramint.2019.03.114.
[21] A. Scano, G. Ennas, F. Frongia, A. L. Barbera, M. A. L. Quintela, G. Marongiu, G. Paschina, D. Peddis, M. Pilloni, C. V. Vázquez, Mn-ferrite Nanoparticles via Reverse Microemulsions: Synthesis and Characterization, Journal of Nanoparticle Research, Vol. 13, Iss. 7, 2011, pp. 3063-3073, https://doi.org/10.1007/s11051-010-0205-y.
[22] Y. K. Li, L. Cheng, X. D. Zhang, X. Guo, Hierarchically-structured MnFe2O4 Nanospheres for Highly Sensitive Detection of NO2, Solid State Ionics, Vol. 336, 2019, pp. 102-109, https://doi.org/10.1016/j.ssi.2019.03.016.
[23] B. M. Asiabar, M. A. Karimi, H. Tavallali, M. R. Nasrabadi, Application of MnFe2O4 and AuNPs Modified CPE as A Sensitive Flunitrazepam Electrochemical Sensor, Microchemical Journal, Vol. 161, 2021, pp. 105745 1-26, https://doi.org/10.1016/j.microc.2020.105745.
[24] R. Asadi, H. Abdollahi, M. Gharabaghi, Z. Boroumand, Effective Removal of Zn (II) Ions From Aqueous Solution by the Magnetic Mn Fe2O4 and CoFe2O4 Spinel Ferrite Nanoparticles with Focuses on Synthesis, Characterization, Adsorption, and Desorption, Advanced Powder Technology, Vol. 31, Iss. 4, 2020, pp. 1480-1489, https://doi.org/10.1016/j.apt.2020.01.028.
[25] S. R. Sabale, Studies on Catalytic Activity of MnFe2O4 and CoFe2O4MNPsas Mediators in Hemoglobin Based Biosensor, Materials Today: Proceedings, International Conference on Materials and Environmental Science (ICMES 2018), Vol. 23, Part 2, 2020, pp. 139-146, https://doi.org/10.1016/j.matpr.2020.02.011.
[26] N. Sezgin, A. Yalçın, Y. Köseoğlu, Mn Fe2O4 Nano Spinels as Potential Sorbent for Adsorption of Chromium from Industrial Wastewater, Desalination and Water Treatment, Vol. 57, Iss. 35, 2016, pp. 16495-16506, https://doi.org/10.1080/19443994.2015.1088808.
[27] J. M. Kwon, J. H. Kim, S. H. Kang, C. J. Choi, J. A. Rajesh, K. S. Ahn, Facile Hydrothermal Synthesis of Cubic Spinel AB2O4 Type MnFe2O4 Nanocrystallites and Their Electrochemical Performance, Applied Surface Science, Vol. 413, 2017, pp. 83-91, https://doi.org/10.1016/j.apsusc.2017.04.022.
[28] H. Tombuloglu, G. Tombuloglu, Y. Slimani, I. Ercan, H. Sozeri, A. Baykal, Impact of Manganese Ferrite (MnFe2O4) Nanoparticles on Growth and Magnetic Character of Carley (Hordeum vulgare L.), Environmental Pollution, Vol. 243, Part B, 2018, pp. 872-881, https://doi.org/10.1016/j.envpol.2018.08.096.
[29] W. Zhang, X. Hou, Z. Lin, L. Yao, X. Wang, Y. Gao, S. Hu, Hollow Microspheres and Nanoparticles Mn Fe2O4 as Superior Anode Materials for Lithium Ion Batteries, Journal of Materials Science: Materials in Electronics, Vol. 26, Iss. 12, 2015, pp. 9535–9545, https://doi.org/10.1007/s10854-015-3616-9.
[30] L. Shao, Z. Ren, G. Zhang, L. Chen, Facile Synthesis, Characterization of A MnFe2O4/Activated Carbon Magnetic Composite and Its Effectiveness in Tetracycline Removal, Materials Chemistry and Physics, Vol. 135, Iss. 1, 2012, pp. 16-24, https://doi.org/10.1016/j.matchemphys.2012.03.035.
[31] B. D. Cullity & S.R. Stock, Elements of X-Ray Diffraction, 3rd Ed., Prentice-Hall Inc., ISBN 0-201-61091-4, 2001, pp. 96-102,
[32] Z. Jabeen, A. Dawood, M. Alomar, S. N. Khan, I. Ali, M. Asif, W. Abbas, M. Sultan Irshad, M. Ahmad, Hydrothermal Synthesis of Nickel Substituted Magnesium Ferrites (NixMg1-xFe2O4) and Insight into The Detailed Structural, Magnetic and Electrochemical Properties, Surfaces and Interfaces, Vol. 40, 2023, pp. 103130 1-9, https://doi.org/10.1016/j.surfin.2023.103130.
[33] P. Zhang, Y. Shu, Y. Zhong, L. Yang, X. Yang, CoZnFeO4 Prepared by Waste Ferrous Sulfate as Iron Source: Synthesis, Characterization and Photocatalytic Degradation of Methylene Blue, Journal of Materials Science: Materials in Electronics, Vol. 32, Iss. 16, 2021, pp. 20985–21011, https://doi.org/10.1007/s10854-021-06562-6.
[34] A. Solunke, V. K. Barote, B. Sonawane, S. E. Shirsath, R. H. Kadam, V. S. Shinde, Sol-gel Synthesis of Fe-rich Cobalt Ferrite Nanoparticles and Influence of pH Concentration, Materials Today: Proceedings, Vol. 92, Part 2, 2023, pp. 1225–1230, https://doi.org/10.1016/j.matpr.2023.05.327.
[35] O. Karaagac, H. Köçkar, The Effects of Temperature and Reaction Time on The Formation of Manganese Ferrite Nanoparticles Synthesized by Hydrothermal Method, Journal of Materials Science: Materials in Electronics,
Vol. 31, Iss. 3, 2020, pp. 2567–2574, https://doi.org/10.1007/s10854-019-02795-8.
[36] F. Ozel, H. Kockar, O. Karaagac, Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size, Journal of Superconductivity and Novel Magnetism, Vol. 28, Iss. 3, 2015,
pp. 823-829, https://doi.org/10.1007/s10948-014-2707-9.
[37] F. Majid, A. Nazir, S. Ata, I. Bibi, H. S. Mehmood, A. Malik, A. Ali, M. Iqbal, Effect of Hydrothermal Reaction Time on Electrical, Structural and Magnetic Properties of Cobalt Ferrite, Zeitschrift fur Physikalische Chemie,
Vol. 234, Iss. 2, 2020, pp. 323–353, https://doi.org/10.1515/zpch-2019-1423.
[38] S. Upadhyay, K. Parekh, B. Pandey, Influence of Crystallite Size on The Magnetic Properties of Fe3O4 Nanoparticles, Journal of Alloys and Compounds, Vol. 678, 2016, pp. 478-485, https://doi.org/10.1016/j.jallcom.2016.03.279.
[39] J. Sahadevan, R. Sojiya, N. Padmanathan, K. Kulathuraan, M. G. Shalini, P. Sivaprakash, Magnetic Property of Fe2O3 and Fe3O4 Nanoparticle Prepared by Solvothermal Process, Materials Today: Proceedings, International Conference on Novel Engineering Materials for Biomedical, Energy, Environment, Sensing, and Other Applications, Vol. 58, Part 3, 2022, pp. 895-897,https://doi.org/10.1016/j.matpr.2021.11.420.
[40] Y. Ge, Y. Zhang, J. Xia, M. Ma, S. He, F. Nie, N. Gu, Effect of Surface Charge and Agglomerate Degree of Magnetic Iron Oxide Nanoparticles on KB Cellular Uptake in Vitro, Colloids and Surfaces B: Biointerfaces,
Vol. 73, Iss. 2, 2009, pp. 294-301, https://doi.org/10.1016/j.colsurfb.2009.05.031.
[41] B. Aslibeiki, P. Kameli, M. H. Ehsani, Mn Fe2O4 Bulk, Nanoparticles and Film: A Comparative Study of Structural and Magnetic Properties, Ceramics International, Vol. 42, Iss. 11, 2016, pp. 12789–12795, https://doi.org/10.1016/j.ceramint.2016.05.041.
[42] L. Z. Li, Z. Yu, Z. W. Lan, K. Sun, R. Di Guo, Effects of Annealing Temperature on The Structure and Static Magnetic Properties of NiZnCo Ferrite Thin Films, Journal of Magnetism and Magnetic Materials, Vol. 368, 2014, pp. 8–11, https://doi.org/10.1016/j.jmmm.2014.05.005.
[43] L. H. Nguyen, L. T. Tam, N. H. Nam, D. K. Tung, N. X. Truong, D. V. Tuan, N. V. Quynh, N. L. M. Tri, P.T. Phong, P. H. Nam, Evaluation of Structural, Optical, and Magnetic Properties of Gd Doped MnFe2O4 Nanoparticles, Ceramics International, Vol. 49, Iss. 24, 2023, pp. 40981–40989, https://doi.org/10.1016/j.ceramint.2023.10.092.
[44] Nitika, A. Rana, V. Kumar, Influence of Temperature on Structural, Magnetic and Thermal Properties of Superparamagnetic MnFe2O4 Nanoparticles, Materials Today: Proceedings, Second International Conference on Aspects of Materials Science and Engineering (ICAMSE 2021), Vol. 45, Part 6, 2021, pp. 4774–4776, https://doi.org/10.1016/j.matpr.2021.01.209.
[45] I. Anila, M. J. Mathew, Influence of pH on Structural and Magnetic Properties of Nanocrystalline Cobalt Ferrites Synthesized by Sol-gel Method, AIP Conference Proceedings, Vol. 2162, No. 1, 2019, pp. 1-7, https://doi.org/10.1063/1.5130287.
[46] A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol-gel Route of Synthesis of Nanoparticles of MgFe2O4 and XRD, FTIR and VSM Study, Journal of Magnetism and Magnetic Materials, Vol. 320, Iss. 21, 2008,
pp. 2774–2779, https://doi.org/10.1016/j.jmmm.2008.06.012.
[47] P. Kumar, S. Pathak, K. Jain, A. Singh, Kuldeep, G. A. Basheed, R. P. Pant, Low-Temperature Large-Scale Hydrothermal Synthesis of Optically Active PEG-200 Capped Single Domain MnFe2O4 Nanoparticles, Journal of Alloys and Compounds, Vol. 904, 2022, pp. 163992 1-8, https://doi.org/10.1016/j.jallcom.2022.163992.
[48] R. N. Bhowmik, Role of Interfacial Disorder on Room Temperature Ferromagnetism and Giant Dielectric Constant in Nano-sized Co1.5Fe1.5O4 Ferrite Grains, Materials Research Bulletin, Vol. 50, No. 1, 2014, pp. 476–482, https://doi.org/10.1016/j.materresbull.2013.11.017.
[49] M. Zhen, X. Wu, B. Zou, Y. Wang, Magnetic Properties of Nanosized MnFe2O4 Particles, Journal of Magnetism and Magnetic Materials, Vol. 183, Iss. 1-2, 1998, pp. 152–156, https://doi.org/10.1016/S0304-8853(97)01057-3.
[50] S. V. Bhandare, R. Kumar, A. V. Anupama, H. K. Choudhary, V. M. Jali, B. Sahoo, Annealing Temperature Dependent Structural and Magnetic Properties of MnFe2O4 Nanoparticles Grown by Sol-gel Auto-combustion Method, Journal of Magnetism and Magnetic Materials, Vol. 433, 2017, pp. 29-34, https://doi.org/10.1016/j.jmmm.2017.02.040.