Ngo Thi Thanh, Nguyen Van Tuan, Dang Huy Hoang, Pham Minh Vuong, Hoang Si Hong, Do Duy Phu, Ho Anh Tam, Vu Nguyen Thuc, Do Thi Huong Giang

Main Article Content

Abstract

In this work we present the design and fabrication of micro-scale magnetoimpedance (MI) sensors based on FeSiC soft magnetic ribbon, using laser engraving and chemical etching to create conventional meander (1M), meander structures in parallel (4Mpa) and perpendicular (4Mpe) configurations. Experimental characterization and finite element simulations revealed that assembling four meander elements enhances the MI effect by up to an order of magnitude compared to the 1M sensor. The 4Mpa configuration exhibits strong anisotropic MI response and lower frequency resonance of 1.5 GHz, while the 4Mpe structure offers a slightly lower MI ratio of 180% but with near-isotropic behavior. These differences arise from uniaxial versus multi-axial magnetic anisotropy, respectively, thanked to the numerical simulation. The results demonstrate that sensor performance can be tailored by selecting appropriate meander arrangements, enabling enhanced sensitivity and directional control for diverse applications in biomedical, industrial, and high-frequency sensing fields.


 

Keywords: Magnetoimpedance, Magnetic energy, Meander design, Magnetic anisotropy

References

[1] A. Sayad, E. Skafidas, P. Kwan, Magneto-impedance biosensor sensitivity: Effect and enhancement, Sensors 20 (18) (2020) 5213.
[2] K. Mohri, M. Yamamoto, T. Uchiyama, Application topics of amorphous wire cmos ic magneto-impedance micromagnetic sensors for i-o-t smart society, Journal of Sensors 2019 (1) (2019) 8285240.
[3] J. M. Coey, Magnetism and magnetic materials, Cambridge university press, 2010.
[4] J. Nabias, A. Asfour, J.-P. Yonnet, Use of magnetic circuits for toroidal gmi current sensors, IEEE Sensors Journal 19 (13) (2019) 4866–4873.
[5] P. Ripka, M. Janosek, Advances in magnetic field sensors, IEEE Sensors journal 10 (6) (2010) 1108–1116.
[6] M.-H. Phan, H.-X. Peng, Giant magnetoimpedance materials: Fundamentals and applications, Progress in Materials Science 53 (2) (2008) 323–420.
[7] L. Panina, K. Mohri, Magneto-impedance effect in amorphous wires, Applied physics letters 65 (9) (1994) 1189–1191.
[8] C. Kittel, Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies, Physical Review 70 (5-6) (1946) 281.
[9] H. Kikuchi, S. Oe, H. Uetake, S. Yabukami, T. Nakai, S. Hashi, K. Ishiyama, Enhancement of sensitivity on miniaturized thin-film magnetoimpedance with ellipsoidal element, Physics Procedia 75 (2015) 1271–1278.
[10] A. Garcia-Arribas, E. Fern´andez, A. V. Svalov, G. V. Kurlyandskaya, A. Barrainkua, D. Navas, J. M. Barandiaran, Tailoring the magnetic anisotropy of thin film permalloy microstrips by combined shape and induced anisotropies, The European Physical Journal B 86 (2013) 1–7.
[11] L. Chen, Y. Zhou, C. Lei, Z.-M. Zhou, W. Ding, Effect of meander structure and line width on gmi effect in micro-patterned co-based ribbon, Journal of Physics D: Applied Physics 42 (14) (2009) 145005.
[12] L. Chen, Y. Zhou, C. Lei, Z. Zhou, W. Ding, Giant magnetoimpedance effect in sputtered single layered nife film and meander nife/cu/nife film, Journal of magnetism and magnetic materials 322 (19) (2010) 2834–2839.
[13] V. Zhukova, J. Blanco, M. Ipatov, M. Churyukanova, J. Olivera, S. Taskaev, A. Zhukov, Optimization of high frequency magnetoimpedance effect of fe-rich microwires by stress-annealing, Intermetallics 94 (2018) 92–98.
[14] D. Garcia, V. Raposo, O. Montero, J. Iniguez, Influence of magnetostriction constant on magnetoimpedance–frequency dependence, Sensors and Actuators A: Physical 129 (1-2) (2006) 227–230.
[15] V. M. Garc´ıa-Chocano, H. Garc´ıa-Miquel, Dc and ac linear magnetic field sensor based on glass coated amorphous microwires with giant magnetoimpedance, Journal of Magnetism and Magnetic Materials 378 (2015) 485–492.
[16] H. A. Tam, N. Van Tuan, N. T. Ngoc, L. Van Lich, D. Van Hai, M.-H. Phan, C. G. Kim, V. D. Lam, D. T. H. Giang, Tuning rotational magnetization for high frequency magnetoimpedance in micro-patterned triangle spiral magnetic systems, Journal of Science: Advanced Materials and Devices 7 (4) (2022) 100514.
[17] V. N. Thuc, H. A. Tam, N. H. Duc, N. T. Ngoc, V. T. N. Khanh, L. Van Lich, V.-H. Dinh, et al., Hierarchical geometric designs for fe-based amorphous materials with tunable soft magnetic properties, Journal of Alloys and Compounds 895 (2022) 162628.
[18] A. Asfour, J.-P. Yonnet, M. Zidi, A high dynamic range gmi current sensor (2012).