Effects of Ion Irradiations on Crystal Structure and Superconducting Properties of MgB2 Films
Main Article Content
Abstract
In this work, variations in the crystal structure and improvements in the superconducting properties of MgB₂ films were investigated. The almost pure crystal MgB₂ films with thickness of ca 800 nm were successfully prepared by using hybrid physical vapor deposition (HPCVD). The irradiations of Nb and Ni ions were carried out by using an accelerator. The irradiated conditions were set-up at an ion energy of 2 MeV and an ion dose of 5 × 1013 ions/cm2. Crystallinity of the pristine and ion-irradiated MgB₂ films was examined by using X-ray diffraction (XRD) technique. The temperature-dependent magnetization results showed the degradation of the critical temperature (Tc) of the ion-irradiated MgB₂ films. Interestingly, the flux pinning properties of both Ni- and Nb-irradiated MgB₂ films were found to improve compared to that of the pristine one; those were revealed by the increases in value of irreversibility field (Hirr) and the enlargements of the area enclosed by the half of hysteresis loops of the ion-irradiated MgB₂ films. The value of critical current density (Jc) deduced from the hysteresis loop of the ion-irradiated MgB₂ films was clearly enhanced, especially at high-field regions. The drop in Tc and the increase in Jc might be due to the creation of disorder defects caused by the ion tracing that happens during ion irradiations.
References
[2] N. Chikumoto, A. Yamamoto, M. Konczykowski, M. Murakami, Magnetization behavior of MgB 2 and the effect of high energy heavy-ion irradiation, Physica C-Superconductivity and Its Applications - PHYSICA C 378 (2002) 466–469. https://doi.org/10.1016/S0921-4534(02)01472-7.
[3] S.R. Shinde, S.B. Ogale, J. Higgins, R.J. Choudhary, V.N. Kulkarni, T. Venkatesan, H. Zheng, R. Ramesh, A. V Pogrebnyakov, S.Y. Xu, Q. Li, X.X. Xi, J.M. Redwing, D. Kanjilal, Modification of critical current density of MgB2 films irradiated with 200 MeV Ag ions, Appl Phys Lett 84 (2004) 2352–2354. https://doi.org/10.1063/1.1687982.
[4] L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, F. Holtzberg, Vortex confinement by columnar defects in YBa2Cu3O7 crystals: Enhanced pinning at high fields and temperatures, Phys Rev Lett 67 (1991) 648–651. https://doi.org/10.1103/PhysRevLett.67.648.
[5] P. Yang, C.M. Lieber, Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities, Science (1979) 273 (1996) 1836–1840. https://doi.org/10.1126/science.273.5283.1836.
[6] D.M. Parkin, Radiation effects in high-temperature superconductors: A brief review, Metallurgical Transactions A 21 (1990) 1015–1019. https://doi.org/10.1007/BF02698234.
[7] K.M. Klein, C. Park, A.F. Tasch, Monte Carlo simulation of boron implantation into single-crystal silicon, IEEE Trans Electron Devices 39 (1992) 1614–1621. https://doi.org/10.1109/16.141226.
[8] P. Orgiani, K. Chen, Y. Cui, Q. Li, V. Ferrando, M. Putti, M. Iavarone, R. Di Capua, R. Ciancio, R. Vaglio, L. Maritato, X.X. Xi, Anisotropic transport properties in tiltedc-axisMgB2 thin films, Supercond Sci Technol 23 (2009) 025012. https://doi.org/10.1088/0953-2048/23/2/025012.
[9] J.J. Tu, G.L. Carr, V. Perebeinos, C.C. Homes, M. Strongin, P.B. Allen, W.N. Kang, E.M. Choi, H.J. Kim, S.I. Lee, Optical properties of c-axis oriented superconducting MgB2 films, Phys Rev Lett 87 (2001) 277001-277001–4. https://doi.org/10.1103/PHYSREVLETT.87.277001.
[10] A. Saito, H. Shimakage, A. Kawakami, Z. Wang, K. Kuroda, H. Abe, M. Naito, W.J. Moon, K. Kaneko, M. Mukaida, S. Ohshima, XRD and TEM studies of as-grown MgB2 thin films deposited on r- and c-plane sapphire substrates, Physica C Supercond 412–414 (2004) 1366–1370. https://doi.org/10.1016/J.PHYSC.2003.12.100.
[11] O. Werzer, B. Stadlober, A. Haase, M. Oehzelt, R. Resel, Full X-ray pattern analysis of vacuum deposited pentacene thin films, European Physical Journal B 66 (2008) 455–459. https://doi.org/10.1140/EPJB/E2008-00452-X.
[12] T. Prasanna, Angular factor corrections in thin film x-ray diffraction, ArXiv: Materials Science (2016).
[13] M. Birkholz, Thin Film Analysis by X-Ray Scattering, Thin Film Analysis by X-Ray Scattering (2006) 1–356. https://doi.org/10.1002/3527607595.
[14] C. Suryanarayana, M.G. Norton, Crystal Structure Determination. II: Hexagonal Structures, X-Ray Diffraction (1998) 125–152. https://doi.org/10.1007/978-1-4899-0148-4_5.
[15] H.J. Kim, W.N. Kang, E.M. Choi, K.H.P. Kim, S.I. Lee, High critical current density of c-axis-oriented MgB2 thin films, J Low Temp Phys 131 (2003) 1025–1031. https://doi.org/10.1023/A:1023436723391/METRICS.
[16] S.D. Bu, D.M. Kim, J.H. Choi, J. Giencke, E.E. Hellstrom, D.C. Larbalestier, S. Patnaik, L. Cooley, C.B. Eom, J. Lettieri, D.G. Schlom, W. Tian, X.Q. Pan, Synthesis and properties of c-axis oriented epitaxial MgB2 thin films, Appl Phys Lett 81 (2002) 1851–1853. https://doi.org/10.1063/1.1504490.
[17] S.-G. Jung, D. Pham, J.M. Lee, Y. Han, W.N. Kang, T. Park, Effects of surface damage on critical current density in MgB2 thin films, Current Applied Physics 22 (2021) 14–19. https://doi.org/https://doi.org/10.1016/j.cap.2020.11.008.
[18] S.-G. Jung, S.-K. Son, D. Pham, W.N. Kang, W.C. Lim, J. Song, T. Park, Enhanced Critical Current Density in the Carbon-Ion Irradiated MgB2 Thin Films, J Physical Soc Japan 88 (2019) 034716. https://doi.org/10.7566/JPSJ.88.034716.
[19] S.-G. Jung, D. Pham, Y. Han, J.M. Lee, W.N. Kang, C. Kim, S. Yeo, B.-H. Jun, T. Park, Improvement of bulk superconducting current capability of MgB2 films using surface degradation, Scr Mater 209 (2022) 114424. https://doi.org/10.1016/j.scriptamat.2021.114424.
[20] D. Pham, S.-G. Jung, D.H. Tran, T. Park, W.N. Kang, Effects of oxygen ion implantation on single-crystalline MgB2 thin films, J Appl Phys 125 (2019) 023904. https://doi.org/10.1063/1.5061772.
[21] H.-J. Kim, W.N. Kang, E.-M. Choi, M.-S. Kim, K.H.P. Kim, S.-I. Lee, High Current-Carrying Capability in c-Axis-Oriented Superconducting MgB2 Thin Films, Phys Rev Lett 87 (2001) 87002. https://doi.org/10.1103/PhysRevLett.87.087002.
[22] Q. Cai, Y. Liu, Z. Ma, H. Li, L. Yu, Variation of pinning mechanism and enhancement of critical current density in MgB2 bulk containing self-generated coherent MgB4 impurity, Appl Phys Lett 103 (2013). https://doi.org/10.1063/1.4822099/129728.
[23] S.-G. Jung, W. Kyung Seong, W. Nam Kang, Flux Pinning Mechanism in Single-Crystalline MgB2 Thin Films, J Physical Soc Japan 82 (2013) 114712. https://doi.org/10.7566/JPSJ.82.114712.
[24] K. Swaminathan-Gopalan, T. Zhu, E. Ertekin, K.A. Stephani, Structural and thermal effects of ion-irradiation induced defect configurations in silicon, Phys Rev B 95 (2017) 184109. https://doi.org/10.1103/PHYSREVB.95.184109/FIGURES/16/MEDIUM.
[25] Y. Bugoslavsky, L.F. Cohen, G.K. Perkins, M. Polichetti, T.J. Tate, R. Gwilliam, A.D. Caplin, Enhancement of the high-magnetic-field critical current density of superconducting MgB2 by proton irradiation, Nature 2001 411:6837 411 (2001) 561–563. https://doi.org/10.1038/35079024.