Dang Ngoc Toan, Sergey E. Kichanov, Anton V. Rutkauskas, Hoang Trong Phuc, Dinh Thanh Khan, Trinh Ngoc Dat, Le Vu Truong Son, Phan The Long, Tran Tuan Anh

Main Article Content

Abstract

The high-pressure behavior of the 9R rhombohedral polymorph in BaMn0.85Ti0.15O3 was investigated using synchrotron X-ray diffraction and Raman spectroscopy under compression up to 20.7 and 32.6 GPa, respectively. The 9R phase remains stable under pressure but exhibits anisotropic lattice compression, with the c-axis being less compressible due to intrinsic structural anisotropy. An isostructural transformation occurs around 9 GPa, as evidenced by anomalies in the pressure dependence of the lattice parameters, bulk modulus, and Raman vibrational modes. This transformation is attributed to pressure-driven rearrangements in the local bonding environment within the Mn/Ti–O octahedral framework, primarily involving Mn/Ti vibrations.

Keywords: isostructural transformation, Raman spectroscopy, external pressure, X-ray diffraction

References

[1] J. V. D. Brink, D. I. Khomskii, Multiferroicity Due to Charge Ordering, Journal of Physics: Condensed Matter, Vol. 20, No. 43, 2008, pp. 434217, https://doi.org/10.1088/0953-8984/20/43/434217.
[2] S. W. W. Cheong, M. Mostovoy, Multiferroics: A Magnetic Twist for Ferroelectricity, Nature Materials, Vol. 6, 2007, pp. 13–20, https://doi.org/10.1038/nmat1804.
[3] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic Control of Ferroelectric Polarization, Nature, Vol. 426, 2003, pp. 55-58, https://doi.org/10.1038/nature02018.
[4] M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, The Evolution of Multiferroics, Nature Reviews Materials,
Vol. 1, 2016, pp. 16046, https://doi.org/10.1038/natrevmats.2016.46.
[5] G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. E. Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, A. P. Ramirez, Magnetically Driven Ferroelectric Order in Ni3V2O8, Physical Review Letters, Vol. 95, No. 8, 2005, pp. 087205, https://doi.org/10.1103/PhysRevLett.95.087205.
[6] O. B. Korneta, T. F. Qi, M. Ge, S. Parkin, L. E. De Long, P. Schlottmann, G. Cao, Correlated Giant Dielectric Peaks and Antiferromagnetic Transitions Near Room Temperature in Pure and Alkali-doped BaMnO3-δ, Journal of Physics: Condensed Matter, Vol. 23, No. 43, 2011, pp. 435901,
https://doi.org/10.1088/0953-8984/23/43/435901.
[7] H. Sakai, J. Fujioka, T. Fukuda, D. Okuyama, D. Hashizume, F. Kagawa, H. Nakao, Y. Murakami, T. Arima, A. Q. R. Baron, Y. Taguchi, Y. Tokura, Displacement-Type Ferroelectricity with Off-center Magnetic Ions in Perovskite Sr1-xBaxMnO3, Physical Review Letters, Vol. 107, No. 13, 2011, pp. 137601, https://doi.org/10.1103/PhysRevLett.107.137601.
[8] J. Varignon, P. Ghosez, Improper Ferroelectricity and Multiferroism in 2H-BaMnO3, Physical Review B, Vol. 87, No. 14, 2013, pp. 140403, https://doi.org/10.1103/PhysRevB.87.140403.
[9] J. M. Rondinelli, A. S. Eidelson, N. A. Spaldin, Non-d0 Mn-driven Ferroelectricity in Antiferromagnetic BaMnO3, Physical Review B, Vol. 79, No. 20, 2009, pp. 205119, https://doi.org/10.1103/PhysRevB.79.205119.
[10] B. Poojitha, A. Rathore, A. Kumar, S. Saha, Signatures of Magnetostriction and Spin-phonon Coupling in Magnetoelectric Hexagonal 15R-BaMnO3, Physical Review B, Vol. 102, No. 13, 2020, pp. 134436, https://doi.org/10.1103/PhysRevB.102.134436.
[11] D. P. Kozlenko, N. T. Dang, T. L. Phan, S. E. Kichanov, L. H. Khiem, S. G. Jabarov, T. A. Tran, T. V. Manh, A. T. Le, T. K. Nguyen, B. N. Savenko, The Structural, Magnetic and Vibrational Properties of Ti-doped BaMnO3, Journal of Alloys and Compounds, Vol. 695, 2017, pp. 2539–2548 , https://doi.org/10.1016/j.jallcom.2016.11.159.
[12] N. V. Tarakina, A. P. Tyutyunnik, G. V. Bazuev, A. D. Vasilev, C. Gould, I. V. Nikolaenko, I. F. Berger, Synthesis and Crystal Structure of a New Hexagonal Perovskite 7H-Ba7Li1.75Mn3.5O15.75 with Mn4+/Mn5+ Charge Distribution, Dalton Transactions, Vol. 44, No. 42, 2015, pp. 18527-18535, https://doi.org/10.1039/C5DT01528F.
[13] Y. Syono, S. I. Akimoto, K. Kohn, Structure Relations of Hexagonal Perovskite-Like Compounds ABX3 at High Pressure, Journal of the Physical Society of Japan, Vol. 26, No. 4, 1969, PP. 993-999, https://doi.org/10.1143/JPSJ.26.993.
[14] S. Qin, Y. Y. Chin, B. Zhou, Z. Liu, X. Ye, J. Guo, G. Liu, C. T. Chen, Z. Hu, Y. Long, High-Pressure Synthesis and Magnetism of the 4H-BaMnO3 Single Crystal and Its 6H-Type Polymorph, Inorganic Chemistry, Vol. 60, No. 21, 2021, pp. 16308-16315, https://doi.org/10.1021/acs.inorgchem.1c02155.
[15] H. Chen, A. J. Millis, Phase Diagram of Sr1-xBaxMnO3 as a Function of Chemical Doping, Epitaxial Strain, and External Pressure, Physical Review B, Vol. 94, No. 16, 2016, pp. 165106, https://doi.org/10.1103/PhysRevB.94.165106.
[16] P. Thakur, S. Kumari, S. Chaudhary, N. Sharma, M. Lal, Multifunctional Tuning of Structural, Dielectric, and Magnetic Properties of Ti-doped BaMnO3 Ceramics, Emergent Materials, Vol. 7, 2024, pp. 1733-1752, https://doi.org/10.1007/s42247-024-00689-y.
[17] B. Poojitha, A. Rathore, S. Saha, Spin-Phonon Coupling in Sr and Ti Incorporated 9R-BaMnO3, Journal of Magnetism and Magnetic Materials, Vol. 483, 2019, pp. 212–218, https://doi.org/10.1016/j.jmmm.2019.03.114.
[18] D. P. Kozlenko, N. T. Dang, S. E. Kichanov, L. T. P. Thao, A. V. Rutkaukas, E. V. Lukin, B. N. Savenko, N. Tran, D. T. Khan, L. V. T. Son, L. H. Khiem, B. W. Lee, T. L. Phan, N. L. Phan, N. T. Tho, N. N. Hieu, T. A. Tran, M. H. Phan, High Pressure Enhanced Magnetic Ordering and Magnetostructural Coupling in the Geometrically Frustrated Spinel Mn3O4, Physical Review B, Vol. 105, No. 9, 2022, pp. 094430, https://doi.org/10.1103/PhysRevB.105.094430.
[19] K. K. Pandey, H. K. Poswal, R. Kumar, S. M. Sharma, High Pressure Iso-structural Phase Transition in BiMn2O5, Journal of Physics: Condensed Matter, Vol. 25, No. 32, 2013, pp. 325401, https://doi.org/10.1088/0953-8984/25/32/325401.
[20] D. P. Kozlenko, N. T. Dang, S. E. Kichanov, E. V. Lukin, A. M. Pashayev, A. I. Mammadov, S. H. Jabarov, L. S. Dubrovinsky, H. P. Liermann, W. Morgenroth, R. Z. Mehdiyeva, V. G. Smotrakov, B. N. Savenko, Competing Magnetic and Structural States in Multiferroic YMn2O5 at High Pressure, Physical Review B, Vol. 92, No. 13, 2015, pp. 134409, https://doi.org/10.1103/PhysRevB.92.134409.
[21] D. T. Khan, D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, T. N. Nguyen, N. T. Tho, V. T. Nguyen, T. A. Tran, N. L. Phan, T. P. Hoang, S. H. Jabarov, A. V. Rutkauskas, N. T. Dang, Revealing the Electronic Origin of Pressure-Induced Isostructural Transformations in Ca3Co2O6, Journal of Electronic Materials, Vol. 54, 2025,
pp. 3651–3662, https://doi.org/10.1007/s11664-025-11742-9.
[22] H. P. Liermann, W. Morgenroth, A. Ehnes, A. Berghäuser, B. Winkler, H. Franz, E. Weckert, The Extreme Conditions Beamline at PETRA III, DESY: Possibilities to Conduct Time Resolved Monochromatic Diffraction Experiments in Dynamic and Laser Heated DAC, Journal of Physics: Conference Series, Vol. 215, 2010,
pp. 012029, https://doi.org/10.1088/1742-6596/215/1/012029.
[23] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Häusermann, Two-dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan, High Pressure Research, Vol. 14, No. 4-6, 1996, pp. 235-248, https://doi.org/10.1080/08957959608201408.
[24] J. R. Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, P Physica B: Condensed Matter, Vol. 192, No. 1-2, 1993, pp. 55-69, https://doi.org/10.1016/0921-4526(93)90108-I.
[25] N. Dubrovinskaia, L. Dubrovinsky, Whole-cell Heater for The Diamond Anvil Cell, Review of Scientific Instruments, Vol. 74, No. 7, 2003, pp. 3433-3437, https://doi.org/10.1063/1.1578151.
[26] J. J. Adkin, M. A. Hayward, BaMnO3-x Revisited: A Structural and Magnetic Study, Chemistry of Materials,
Vol. 19, No. 4, 2007, pp. 755-762, https://doi.org/10.1021/cm062055r.
[27] L. Miranda, D.C. Sinclair, M. Hernando, A. Varela, J. Ramírez-Castellanos, K. Boulahya, J.M. González-Calbet, M. Parras, Polytypism in The BaMn0.85Ti0.15O3-δ System (0.07 ≤ δ ≤ 0.34). Structural, Magnetic, and Electrical Characterization of The 9R-polymorph, Chemistry of Materials, Vol. 22, No. 14, 2010, pp. 4320-4327, https://doi.org/10.1021/cm1012735.
[28] L.W. Finger, R. M. Hazen, G. Zou, H. K. Mao, P. M. Bell, Structure and Compression of Crystalline Argon and Neon at High Pressure and Room Temperature, Applied Physics Lettes, Vol. 39, No. 11, 1981, pp. 892-894, https://doi.org/10.1063/1.92597.
[29] M. Frogley, J. Sly, D. Dunstan, Pressure Dependence of the Direct Band Gap in Tetrahedral Semiconductors, Physical Review B, Vol. 58, No. 19, 1998, pp. 12579-12582, https://doi.org/10.1103/PhysRevB.58.12579.
[30] D. Errandonea, R. S. Kumar, F.J. Manjón, V. V. Ursaki, E. V. Rusu, Post-spinel Transformations and Equation of State in ZnGa2O4: Determination at High Pressure by In Situ X-ray Diffraction, Physical Review B, Vol. 79,
No. 2, 2009, pp. 024103, https://doi.org/10.1103/PhysRevB.79.024103.
[31] M. B. Nielsen, D. Ceresoli, P. Parisiades, V. B. Prakapenka, T. Yu, Y. Wang, M. Bremholm, Phase Stability of The SrMnO3 Hexagonal Perovskite System at High Pressure and Temperature, Physical Review B, Vol. 90,
No. 21, 2014, pp. 214101, https://doi.org/10.1103/PhysRevB.90.214101.
[32] Y. S. Lee, T. W. Noh, J. H. Park, K. B. Lee, G. Cao, J. E. Crow, M. K. Lee, C. B. Eom, E. J. Oh, I. S. Yang, Temperature-Dependent Raman Spectroscopy in BaRuO3 Systems, Physical Review. B, Vol. 65, No. 23, 2002, pp. 235113, https://doi.org/10.1103/PhysRevB.65.235113.
[33] P. Bommareddy, A. Kumar, A. Rathore, D. Negi, S. Saha, Engineering Crystal Structure and Spin-phonon Coupling in Ba1-xSrxMnO3, Journal of Magnetism and Magnetic Materials, Vol. 541, 2022, pp. 168539. https://doi.org/10.1016/j.jmmm.2021.168539.