Pressure-driven Structural Transformation in the 9R Rhombohedral Phase of BaMn0.85Ti0.15O3
Main Article Content
Abstract
The high-pressure behavior of the 9R rhombohedral polymorph in BaMn0.85Ti0.15O3 was investigated using synchrotron X-ray diffraction and Raman spectroscopy under compression up to 20.7 and 32.6 GPa, respectively. The 9R phase remains stable under pressure but exhibits anisotropic lattice compression, with the c-axis being less compressible due to intrinsic structural anisotropy. An isostructural transformation occurs around 9 GPa, as evidenced by anomalies in the pressure dependence of the lattice parameters, bulk modulus, and Raman vibrational modes. This transformation is attributed to pressure-driven rearrangements in the local bonding environment within the Mn/Ti–O octahedral framework, primarily involving Mn/Ti vibrations.
Keywords:
isostructural transformation, Raman spectroscopy, external pressure, X-ray diffraction
References
[1] J. V. D. Brink, D. I. Khomskii, Multiferroicity Due to Charge Ordering, Journal of Physics: Condensed Matter, Vol. 20, No. 43, 2008, pp. 434217, https://doi.org/10.1088/0953-8984/20/43/434217.
[2] S. W. W. Cheong, M. Mostovoy, Multiferroics: A Magnetic Twist for Ferroelectricity, Nature Materials, Vol. 6, 2007, pp. 13–20, https://doi.org/10.1038/nmat1804.
[3] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic Control of Ferroelectric Polarization, Nature, Vol. 426, 2003, pp. 55-58, https://doi.org/10.1038/nature02018.
[4] M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, The Evolution of Multiferroics, Nature Reviews Materials,
Vol. 1, 2016, pp. 16046, https://doi.org/10.1038/natrevmats.2016.46.
[5] G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. E. Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, A. P. Ramirez, Magnetically Driven Ferroelectric Order in Ni3V2O8, Physical Review Letters, Vol. 95, No. 8, 2005, pp. 087205, https://doi.org/10.1103/PhysRevLett.95.087205.
[6] O. B. Korneta, T. F. Qi, M. Ge, S. Parkin, L. E. De Long, P. Schlottmann, G. Cao, Correlated Giant Dielectric Peaks and Antiferromagnetic Transitions Near Room Temperature in Pure and Alkali-doped BaMnO3-δ, Journal of Physics: Condensed Matter, Vol. 23, No. 43, 2011, pp. 435901,
https://doi.org/10.1088/0953-8984/23/43/435901.
[7] H. Sakai, J. Fujioka, T. Fukuda, D. Okuyama, D. Hashizume, F. Kagawa, H. Nakao, Y. Murakami, T. Arima, A. Q. R. Baron, Y. Taguchi, Y. Tokura, Displacement-Type Ferroelectricity with Off-center Magnetic Ions in Perovskite Sr1-xBaxMnO3, Physical Review Letters, Vol. 107, No. 13, 2011, pp. 137601, https://doi.org/10.1103/PhysRevLett.107.137601.
[8] J. Varignon, P. Ghosez, Improper Ferroelectricity and Multiferroism in 2H-BaMnO3, Physical Review B, Vol. 87, No. 14, 2013, pp. 140403, https://doi.org/10.1103/PhysRevB.87.140403.
[9] J. M. Rondinelli, A. S. Eidelson, N. A. Spaldin, Non-d0 Mn-driven Ferroelectricity in Antiferromagnetic BaMnO3, Physical Review B, Vol. 79, No. 20, 2009, pp. 205119, https://doi.org/10.1103/PhysRevB.79.205119.
[10] B. Poojitha, A. Rathore, A. Kumar, S. Saha, Signatures of Magnetostriction and Spin-phonon Coupling in Magnetoelectric Hexagonal 15R-BaMnO3, Physical Review B, Vol. 102, No. 13, 2020, pp. 134436, https://doi.org/10.1103/PhysRevB.102.134436.
[11] D. P. Kozlenko, N. T. Dang, T. L. Phan, S. E. Kichanov, L. H. Khiem, S. G. Jabarov, T. A. Tran, T. V. Manh, A. T. Le, T. K. Nguyen, B. N. Savenko, The Structural, Magnetic and Vibrational Properties of Ti-doped BaMnO3, Journal of Alloys and Compounds, Vol. 695, 2017, pp. 2539–2548 , https://doi.org/10.1016/j.jallcom.2016.11.159.
[12] N. V. Tarakina, A. P. Tyutyunnik, G. V. Bazuev, A. D. Vasilev, C. Gould, I. V. Nikolaenko, I. F. Berger, Synthesis and Crystal Structure of a New Hexagonal Perovskite 7H-Ba7Li1.75Mn3.5O15.75 with Mn4+/Mn5+ Charge Distribution, Dalton Transactions, Vol. 44, No. 42, 2015, pp. 18527-18535, https://doi.org/10.1039/C5DT01528F.
[13] Y. Syono, S. I. Akimoto, K. Kohn, Structure Relations of Hexagonal Perovskite-Like Compounds ABX3 at High Pressure, Journal of the Physical Society of Japan, Vol. 26, No. 4, 1969, PP. 993-999, https://doi.org/10.1143/JPSJ.26.993.
[14] S. Qin, Y. Y. Chin, B. Zhou, Z. Liu, X. Ye, J. Guo, G. Liu, C. T. Chen, Z. Hu, Y. Long, High-Pressure Synthesis and Magnetism of the 4H-BaMnO3 Single Crystal and Its 6H-Type Polymorph, Inorganic Chemistry, Vol. 60, No. 21, 2021, pp. 16308-16315, https://doi.org/10.1021/acs.inorgchem.1c02155.
[15] H. Chen, A. J. Millis, Phase Diagram of Sr1-xBaxMnO3 as a Function of Chemical Doping, Epitaxial Strain, and External Pressure, Physical Review B, Vol. 94, No. 16, 2016, pp. 165106, https://doi.org/10.1103/PhysRevB.94.165106.
[16] P. Thakur, S. Kumari, S. Chaudhary, N. Sharma, M. Lal, Multifunctional Tuning of Structural, Dielectric, and Magnetic Properties of Ti-doped BaMnO3 Ceramics, Emergent Materials, Vol. 7, 2024, pp. 1733-1752, https://doi.org/10.1007/s42247-024-00689-y.
[17] B. Poojitha, A. Rathore, S. Saha, Spin-Phonon Coupling in Sr and Ti Incorporated 9R-BaMnO3, Journal of Magnetism and Magnetic Materials, Vol. 483, 2019, pp. 212–218, https://doi.org/10.1016/j.jmmm.2019.03.114.
[18] D. P. Kozlenko, N. T. Dang, S. E. Kichanov, L. T. P. Thao, A. V. Rutkaukas, E. V. Lukin, B. N. Savenko, N. Tran, D. T. Khan, L. V. T. Son, L. H. Khiem, B. W. Lee, T. L. Phan, N. L. Phan, N. T. Tho, N. N. Hieu, T. A. Tran, M. H. Phan, High Pressure Enhanced Magnetic Ordering and Magnetostructural Coupling in the Geometrically Frustrated Spinel Mn3O4, Physical Review B, Vol. 105, No. 9, 2022, pp. 094430, https://doi.org/10.1103/PhysRevB.105.094430.
[19] K. K. Pandey, H. K. Poswal, R. Kumar, S. M. Sharma, High Pressure Iso-structural Phase Transition in BiMn2O5, Journal of Physics: Condensed Matter, Vol. 25, No. 32, 2013, pp. 325401, https://doi.org/10.1088/0953-8984/25/32/325401.
[20] D. P. Kozlenko, N. T. Dang, S. E. Kichanov, E. V. Lukin, A. M. Pashayev, A. I. Mammadov, S. H. Jabarov, L. S. Dubrovinsky, H. P. Liermann, W. Morgenroth, R. Z. Mehdiyeva, V. G. Smotrakov, B. N. Savenko, Competing Magnetic and Structural States in Multiferroic YMn2O5 at High Pressure, Physical Review B, Vol. 92, No. 13, 2015, pp. 134409, https://doi.org/10.1103/PhysRevB.92.134409.
[21] D. T. Khan, D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, T. N. Nguyen, N. T. Tho, V. T. Nguyen, T. A. Tran, N. L. Phan, T. P. Hoang, S. H. Jabarov, A. V. Rutkauskas, N. T. Dang, Revealing the Electronic Origin of Pressure-Induced Isostructural Transformations in Ca3Co2O6, Journal of Electronic Materials, Vol. 54, 2025,
pp. 3651–3662, https://doi.org/10.1007/s11664-025-11742-9.
[22] H. P. Liermann, W. Morgenroth, A. Ehnes, A. Berghäuser, B. Winkler, H. Franz, E. Weckert, The Extreme Conditions Beamline at PETRA III, DESY: Possibilities to Conduct Time Resolved Monochromatic Diffraction Experiments in Dynamic and Laser Heated DAC, Journal of Physics: Conference Series, Vol. 215, 2010,
pp. 012029, https://doi.org/10.1088/1742-6596/215/1/012029.
[23] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Häusermann, Two-dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan, High Pressure Research, Vol. 14, No. 4-6, 1996, pp. 235-248, https://doi.org/10.1080/08957959608201408.
[24] J. R. Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, P Physica B: Condensed Matter, Vol. 192, No. 1-2, 1993, pp. 55-69, https://doi.org/10.1016/0921-4526(93)90108-I.
[25] N. Dubrovinskaia, L. Dubrovinsky, Whole-cell Heater for The Diamond Anvil Cell, Review of Scientific Instruments, Vol. 74, No. 7, 2003, pp. 3433-3437, https://doi.org/10.1063/1.1578151.
[26] J. J. Adkin, M. A. Hayward, BaMnO3-x Revisited: A Structural and Magnetic Study, Chemistry of Materials,
Vol. 19, No. 4, 2007, pp. 755-762, https://doi.org/10.1021/cm062055r.
[27] L. Miranda, D.C. Sinclair, M. Hernando, A. Varela, J. Ramírez-Castellanos, K. Boulahya, J.M. González-Calbet, M. Parras, Polytypism in The BaMn0.85Ti0.15O3-δ System (0.07 ≤ δ ≤ 0.34). Structural, Magnetic, and Electrical Characterization of The 9R-polymorph, Chemistry of Materials, Vol. 22, No. 14, 2010, pp. 4320-4327, https://doi.org/10.1021/cm1012735.
[28] L.W. Finger, R. M. Hazen, G. Zou, H. K. Mao, P. M. Bell, Structure and Compression of Crystalline Argon and Neon at High Pressure and Room Temperature, Applied Physics Lettes, Vol. 39, No. 11, 1981, pp. 892-894, https://doi.org/10.1063/1.92597.
[29] M. Frogley, J. Sly, D. Dunstan, Pressure Dependence of the Direct Band Gap in Tetrahedral Semiconductors, Physical Review B, Vol. 58, No. 19, 1998, pp. 12579-12582, https://doi.org/10.1103/PhysRevB.58.12579.
[30] D. Errandonea, R. S. Kumar, F.J. Manjón, V. V. Ursaki, E. V. Rusu, Post-spinel Transformations and Equation of State in ZnGa2O4: Determination at High Pressure by In Situ X-ray Diffraction, Physical Review B, Vol. 79,
No. 2, 2009, pp. 024103, https://doi.org/10.1103/PhysRevB.79.024103.
[31] M. B. Nielsen, D. Ceresoli, P. Parisiades, V. B. Prakapenka, T. Yu, Y. Wang, M. Bremholm, Phase Stability of The SrMnO3 Hexagonal Perovskite System at High Pressure and Temperature, Physical Review B, Vol. 90,
No. 21, 2014, pp. 214101, https://doi.org/10.1103/PhysRevB.90.214101.
[32] Y. S. Lee, T. W. Noh, J. H. Park, K. B. Lee, G. Cao, J. E. Crow, M. K. Lee, C. B. Eom, E. J. Oh, I. S. Yang, Temperature-Dependent Raman Spectroscopy in BaRuO3 Systems, Physical Review. B, Vol. 65, No. 23, 2002, pp. 235113, https://doi.org/10.1103/PhysRevB.65.235113.
[33] P. Bommareddy, A. Kumar, A. Rathore, D. Negi, S. Saha, Engineering Crystal Structure and Spin-phonon Coupling in Ba1-xSrxMnO3, Journal of Magnetism and Magnetic Materials, Vol. 541, 2022, pp. 168539. https://doi.org/10.1016/j.jmmm.2021.168539.
[2] S. W. W. Cheong, M. Mostovoy, Multiferroics: A Magnetic Twist for Ferroelectricity, Nature Materials, Vol. 6, 2007, pp. 13–20, https://doi.org/10.1038/nmat1804.
[3] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic Control of Ferroelectric Polarization, Nature, Vol. 426, 2003, pp. 55-58, https://doi.org/10.1038/nature02018.
[4] M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, The Evolution of Multiferroics, Nature Reviews Materials,
Vol. 1, 2016, pp. 16046, https://doi.org/10.1038/natrevmats.2016.46.
[5] G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. E. Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, A. P. Ramirez, Magnetically Driven Ferroelectric Order in Ni3V2O8, Physical Review Letters, Vol. 95, No. 8, 2005, pp. 087205, https://doi.org/10.1103/PhysRevLett.95.087205.
[6] O. B. Korneta, T. F. Qi, M. Ge, S. Parkin, L. E. De Long, P. Schlottmann, G. Cao, Correlated Giant Dielectric Peaks and Antiferromagnetic Transitions Near Room Temperature in Pure and Alkali-doped BaMnO3-δ, Journal of Physics: Condensed Matter, Vol. 23, No. 43, 2011, pp. 435901,
https://doi.org/10.1088/0953-8984/23/43/435901.
[7] H. Sakai, J. Fujioka, T. Fukuda, D. Okuyama, D. Hashizume, F. Kagawa, H. Nakao, Y. Murakami, T. Arima, A. Q. R. Baron, Y. Taguchi, Y. Tokura, Displacement-Type Ferroelectricity with Off-center Magnetic Ions in Perovskite Sr1-xBaxMnO3, Physical Review Letters, Vol. 107, No. 13, 2011, pp. 137601, https://doi.org/10.1103/PhysRevLett.107.137601.
[8] J. Varignon, P. Ghosez, Improper Ferroelectricity and Multiferroism in 2H-BaMnO3, Physical Review B, Vol. 87, No. 14, 2013, pp. 140403, https://doi.org/10.1103/PhysRevB.87.140403.
[9] J. M. Rondinelli, A. S. Eidelson, N. A. Spaldin, Non-d0 Mn-driven Ferroelectricity in Antiferromagnetic BaMnO3, Physical Review B, Vol. 79, No. 20, 2009, pp. 205119, https://doi.org/10.1103/PhysRevB.79.205119.
[10] B. Poojitha, A. Rathore, A. Kumar, S. Saha, Signatures of Magnetostriction and Spin-phonon Coupling in Magnetoelectric Hexagonal 15R-BaMnO3, Physical Review B, Vol. 102, No. 13, 2020, pp. 134436, https://doi.org/10.1103/PhysRevB.102.134436.
[11] D. P. Kozlenko, N. T. Dang, T. L. Phan, S. E. Kichanov, L. H. Khiem, S. G. Jabarov, T. A. Tran, T. V. Manh, A. T. Le, T. K. Nguyen, B. N. Savenko, The Structural, Magnetic and Vibrational Properties of Ti-doped BaMnO3, Journal of Alloys and Compounds, Vol. 695, 2017, pp. 2539–2548 , https://doi.org/10.1016/j.jallcom.2016.11.159.
[12] N. V. Tarakina, A. P. Tyutyunnik, G. V. Bazuev, A. D. Vasilev, C. Gould, I. V. Nikolaenko, I. F. Berger, Synthesis and Crystal Structure of a New Hexagonal Perovskite 7H-Ba7Li1.75Mn3.5O15.75 with Mn4+/Mn5+ Charge Distribution, Dalton Transactions, Vol. 44, No. 42, 2015, pp. 18527-18535, https://doi.org/10.1039/C5DT01528F.
[13] Y. Syono, S. I. Akimoto, K. Kohn, Structure Relations of Hexagonal Perovskite-Like Compounds ABX3 at High Pressure, Journal of the Physical Society of Japan, Vol. 26, No. 4, 1969, PP. 993-999, https://doi.org/10.1143/JPSJ.26.993.
[14] S. Qin, Y. Y. Chin, B. Zhou, Z. Liu, X. Ye, J. Guo, G. Liu, C. T. Chen, Z. Hu, Y. Long, High-Pressure Synthesis and Magnetism of the 4H-BaMnO3 Single Crystal and Its 6H-Type Polymorph, Inorganic Chemistry, Vol. 60, No. 21, 2021, pp. 16308-16315, https://doi.org/10.1021/acs.inorgchem.1c02155.
[15] H. Chen, A. J. Millis, Phase Diagram of Sr1-xBaxMnO3 as a Function of Chemical Doping, Epitaxial Strain, and External Pressure, Physical Review B, Vol. 94, No. 16, 2016, pp. 165106, https://doi.org/10.1103/PhysRevB.94.165106.
[16] P. Thakur, S. Kumari, S. Chaudhary, N. Sharma, M. Lal, Multifunctional Tuning of Structural, Dielectric, and Magnetic Properties of Ti-doped BaMnO3 Ceramics, Emergent Materials, Vol. 7, 2024, pp. 1733-1752, https://doi.org/10.1007/s42247-024-00689-y.
[17] B. Poojitha, A. Rathore, S. Saha, Spin-Phonon Coupling in Sr and Ti Incorporated 9R-BaMnO3, Journal of Magnetism and Magnetic Materials, Vol. 483, 2019, pp. 212–218, https://doi.org/10.1016/j.jmmm.2019.03.114.
[18] D. P. Kozlenko, N. T. Dang, S. E. Kichanov, L. T. P. Thao, A. V. Rutkaukas, E. V. Lukin, B. N. Savenko, N. Tran, D. T. Khan, L. V. T. Son, L. H. Khiem, B. W. Lee, T. L. Phan, N. L. Phan, N. T. Tho, N. N. Hieu, T. A. Tran, M. H. Phan, High Pressure Enhanced Magnetic Ordering and Magnetostructural Coupling in the Geometrically Frustrated Spinel Mn3O4, Physical Review B, Vol. 105, No. 9, 2022, pp. 094430, https://doi.org/10.1103/PhysRevB.105.094430.
[19] K. K. Pandey, H. K. Poswal, R. Kumar, S. M. Sharma, High Pressure Iso-structural Phase Transition in BiMn2O5, Journal of Physics: Condensed Matter, Vol. 25, No. 32, 2013, pp. 325401, https://doi.org/10.1088/0953-8984/25/32/325401.
[20] D. P. Kozlenko, N. T. Dang, S. E. Kichanov, E. V. Lukin, A. M. Pashayev, A. I. Mammadov, S. H. Jabarov, L. S. Dubrovinsky, H. P. Liermann, W. Morgenroth, R. Z. Mehdiyeva, V. G. Smotrakov, B. N. Savenko, Competing Magnetic and Structural States in Multiferroic YMn2O5 at High Pressure, Physical Review B, Vol. 92, No. 13, 2015, pp. 134409, https://doi.org/10.1103/PhysRevB.92.134409.
[21] D. T. Khan, D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, T. N. Nguyen, N. T. Tho, V. T. Nguyen, T. A. Tran, N. L. Phan, T. P. Hoang, S. H. Jabarov, A. V. Rutkauskas, N. T. Dang, Revealing the Electronic Origin of Pressure-Induced Isostructural Transformations in Ca3Co2O6, Journal of Electronic Materials, Vol. 54, 2025,
pp. 3651–3662, https://doi.org/10.1007/s11664-025-11742-9.
[22] H. P. Liermann, W. Morgenroth, A. Ehnes, A. Berghäuser, B. Winkler, H. Franz, E. Weckert, The Extreme Conditions Beamline at PETRA III, DESY: Possibilities to Conduct Time Resolved Monochromatic Diffraction Experiments in Dynamic and Laser Heated DAC, Journal of Physics: Conference Series, Vol. 215, 2010,
pp. 012029, https://doi.org/10.1088/1742-6596/215/1/012029.
[23] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Häusermann, Two-dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan, High Pressure Research, Vol. 14, No. 4-6, 1996, pp. 235-248, https://doi.org/10.1080/08957959608201408.
[24] J. R. Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, P Physica B: Condensed Matter, Vol. 192, No. 1-2, 1993, pp. 55-69, https://doi.org/10.1016/0921-4526(93)90108-I.
[25] N. Dubrovinskaia, L. Dubrovinsky, Whole-cell Heater for The Diamond Anvil Cell, Review of Scientific Instruments, Vol. 74, No. 7, 2003, pp. 3433-3437, https://doi.org/10.1063/1.1578151.
[26] J. J. Adkin, M. A. Hayward, BaMnO3-x Revisited: A Structural and Magnetic Study, Chemistry of Materials,
Vol. 19, No. 4, 2007, pp. 755-762, https://doi.org/10.1021/cm062055r.
[27] L. Miranda, D.C. Sinclair, M. Hernando, A. Varela, J. Ramírez-Castellanos, K. Boulahya, J.M. González-Calbet, M. Parras, Polytypism in The BaMn0.85Ti0.15O3-δ System (0.07 ≤ δ ≤ 0.34). Structural, Magnetic, and Electrical Characterization of The 9R-polymorph, Chemistry of Materials, Vol. 22, No. 14, 2010, pp. 4320-4327, https://doi.org/10.1021/cm1012735.
[28] L.W. Finger, R. M. Hazen, G. Zou, H. K. Mao, P. M. Bell, Structure and Compression of Crystalline Argon and Neon at High Pressure and Room Temperature, Applied Physics Lettes, Vol. 39, No. 11, 1981, pp. 892-894, https://doi.org/10.1063/1.92597.
[29] M. Frogley, J. Sly, D. Dunstan, Pressure Dependence of the Direct Band Gap in Tetrahedral Semiconductors, Physical Review B, Vol. 58, No. 19, 1998, pp. 12579-12582, https://doi.org/10.1103/PhysRevB.58.12579.
[30] D. Errandonea, R. S. Kumar, F.J. Manjón, V. V. Ursaki, E. V. Rusu, Post-spinel Transformations and Equation of State in ZnGa2O4: Determination at High Pressure by In Situ X-ray Diffraction, Physical Review B, Vol. 79,
No. 2, 2009, pp. 024103, https://doi.org/10.1103/PhysRevB.79.024103.
[31] M. B. Nielsen, D. Ceresoli, P. Parisiades, V. B. Prakapenka, T. Yu, Y. Wang, M. Bremholm, Phase Stability of The SrMnO3 Hexagonal Perovskite System at High Pressure and Temperature, Physical Review B, Vol. 90,
No. 21, 2014, pp. 214101, https://doi.org/10.1103/PhysRevB.90.214101.
[32] Y. S. Lee, T. W. Noh, J. H. Park, K. B. Lee, G. Cao, J. E. Crow, M. K. Lee, C. B. Eom, E. J. Oh, I. S. Yang, Temperature-Dependent Raman Spectroscopy in BaRuO3 Systems, Physical Review. B, Vol. 65, No. 23, 2002, pp. 235113, https://doi.org/10.1103/PhysRevB.65.235113.
[33] P. Bommareddy, A. Kumar, A. Rathore, D. Negi, S. Saha, Engineering Crystal Structure and Spin-phonon Coupling in Ba1-xSrxMnO3, Journal of Magnetism and Magnetic Materials, Vol. 541, 2022, pp. 168539. https://doi.org/10.1016/j.jmmm.2021.168539.