Synthesis of V2O5-SnO2 Nanocomposite for NH3 Detection at Low Temperature
Main Article Content
Abstract
The V2O5-SnO2 nanocomposite was synthesized through a combination of hydrothermal synthesis and subsequent mechanical mixing. Gas-sensing properties of the synthesized nanocomposite were investigated. The results demonstrated that the nanocomposite sensor exhibited notable sensitivity toward ammonia (NH3) at a low operating temperature of 50 °C. Specifically, the sensor achieved a response of 2.3 at an NH3 concentration of 1000 ppm. At this temperature, the V2O5-SnO2-based sensor also displayed good selectivity and repeatability toward NH3, indicating its potential for reliable low-temperature gas sensing applications..
Keywords:
V2O5-SnO2, nanocomposite, hydrothermal, NH3, gas sensor.
References
[1] Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, Y. Fu, Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-precision Gas Sensors Operated at Room Temperature, Materials Horizons, Vol. 6, 2019, pp. 47-506, https//doi.org/10.1039/c8mh01365a.
[2] S. Rani, M. Kumar, P. Garg, R. Yadav, Y. Singh, A. Kumar, B. Govind, U. Deshpande, S. Hausale, V.N. Singh, Thickness dependent P-N Switching in SnSe2/SnOx/SnSe Heterojunction-based NO2 Gas Sensor as Well as Photodetector, Journal of Science: Advanced Materials and Devices, Vol. 8, 2023, pp. 100583. https//doi.org/10.1016/j.jsamd.2023.100583.
[3] R. Alrammouz, M. Lazerges, J. Pironon, I. Bin Taher, A. Randi, Y. Halfaya, S. Gautier, V2O5 Gas Sensors: A Review, Sensors Actuators A Physical, Vol. 332, 2021, pp. 113179, https//doi.org/10.1016/j.sna.2021.113179.
[4] T. T. Nguyet, L. V. Duy, N. C. Nam, D. Q. Dat, H. Nguyen, C. M. Hung, N. V. Duy, N. D. Hoa, Transition from P-type yo N-type Semiconductor in V₂O₅ Nanowire-Based Gas Sensors: Synthesis and Understanding of the Sensing Mechanism, Sensors Actuators B Chemical, Vol. 424, 2025, pp. 136841, https//doi.org/10.1016/j.snb.2024.136841.
[5] N. X. Thai, N. V. Duy, N. V. Toan, C. M. Hung, N. V. Hieu, N. D. Hoa, Effective Monitoring and Classification of Hydrogen and Ammonia Gases with a Bilayer Pt/Sno2 Thin Film Sensor, International Journal of Hydrogen Energy, Vol. 45, 2020, pp. 2418-2428, https//doi.org/10.1016/j.ijhydene.2019.11.072.
[6] A. Imash, G. Smagulova, B. Kaidar, A. Keneshbekova, R. Kazhdanbekov, L. F. Velasco, Z. Mansurov, Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures: Synergizing Morphology and Performance Optimization, Sensors, Vol. 24, No. 21, 2024, pp. 6797, https//doi.org/10.3390/s24216797.
[7] E. Afsharmanesh, H. Haratizadeh, F. Bagheri, Self-powered, Highly Selective and Fast Response Time Ammonia Gas Sensors Based on an rGO/SnO2 Nanocomposite, Sensors Actuators A Physical, Vol. 379, 2024, pp. 115963, https//doi.org/10.1016/j.sna.2024.115963.
[8] Z. Li, W. Zeng, Q. Li, SnO2 as a Gas Sensor in Detection of Volatile Organic Compounds: A review, Sensors Actuators A Physical, Vol. 346, 2022, pp. 113845, https//doi.org/10.1016/j.sna.2022.113845.
[9] V. Janakiraman, V. Tamilnayagam, R. S. Sundararajan, S. Suresh, C. S. Biju, Structural and Optical Properties of Pure SnO2 and V2O5/SnO2 Nanocomposite Thin Filmsbfor Gas Sensing Application, Journal of Materials Science: Materials in Electronics, Vol. 31, 2020, pp. 15477-15488, https//doi.org/10.1007/s10854-020-04110-2.
[10] W. C. Ko, K. M. Kim, Y. J. Kwon, H. Choi, J. K. Park, Y. K. Jeong, ALD-assisted Synthesis of V2O5 Nanoislands on SnO2 Nanowires for Improving NO2 Sensing Performance, Applied Surface Science, Vol. 509, 2020,
pp. 144821, https//doi.org/10.1016/j.apsusc.2019.144821.
[11] F. Zhang, X. Wang, J. Dong, N. Qin, J. Xu, Selective BTEX sensor based on a SnO2/V2O5 composite, Sensors Actuators B Chemical, Vol. 186, 2013, pp. 126-131, https//doi.org/10.1016/j.snb.2013.05.086.
[12] L. Van Duy, T. T. Nguyet, D. T. T. Le, N. V. Duy, H. Nguyen, F. Biasioli, M. Tonezzer, C. D. Natale, N. D. Hoa, Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets Towards Food Spoilage Monitoring, Nanomaterials, Vol. 13, Issue 1, 2023, pp. 146, pp. 1-18, https//doi.org/0.3390/nano13010146.
[13] D. H. Yen, L. Tran, N. Phu, D. Thi, T. Le, Synthesis of Tungsten Oxide Nanofibers Using Electrospinning Towards Gas Sensor Application, Vol. 41, No. 2, 2025, pp. 84-91, https//doi.org/10.25073/2588-1124/vnumap.4993.
[2] S. Rani, M. Kumar, P. Garg, R. Yadav, Y. Singh, A. Kumar, B. Govind, U. Deshpande, S. Hausale, V.N. Singh, Thickness dependent P-N Switching in SnSe2/SnOx/SnSe Heterojunction-based NO2 Gas Sensor as Well as Photodetector, Journal of Science: Advanced Materials and Devices, Vol. 8, 2023, pp. 100583. https//doi.org/10.1016/j.jsamd.2023.100583.
[3] R. Alrammouz, M. Lazerges, J. Pironon, I. Bin Taher, A. Randi, Y. Halfaya, S. Gautier, V2O5 Gas Sensors: A Review, Sensors Actuators A Physical, Vol. 332, 2021, pp. 113179, https//doi.org/10.1016/j.sna.2021.113179.
[4] T. T. Nguyet, L. V. Duy, N. C. Nam, D. Q. Dat, H. Nguyen, C. M. Hung, N. V. Duy, N. D. Hoa, Transition from P-type yo N-type Semiconductor in V₂O₅ Nanowire-Based Gas Sensors: Synthesis and Understanding of the Sensing Mechanism, Sensors Actuators B Chemical, Vol. 424, 2025, pp. 136841, https//doi.org/10.1016/j.snb.2024.136841.
[5] N. X. Thai, N. V. Duy, N. V. Toan, C. M. Hung, N. V. Hieu, N. D. Hoa, Effective Monitoring and Classification of Hydrogen and Ammonia Gases with a Bilayer Pt/Sno2 Thin Film Sensor, International Journal of Hydrogen Energy, Vol. 45, 2020, pp. 2418-2428, https//doi.org/10.1016/j.ijhydene.2019.11.072.
[6] A. Imash, G. Smagulova, B. Kaidar, A. Keneshbekova, R. Kazhdanbekov, L. F. Velasco, Z. Mansurov, Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures: Synergizing Morphology and Performance Optimization, Sensors, Vol. 24, No. 21, 2024, pp. 6797, https//doi.org/10.3390/s24216797.
[7] E. Afsharmanesh, H. Haratizadeh, F. Bagheri, Self-powered, Highly Selective and Fast Response Time Ammonia Gas Sensors Based on an rGO/SnO2 Nanocomposite, Sensors Actuators A Physical, Vol. 379, 2024, pp. 115963, https//doi.org/10.1016/j.sna.2024.115963.
[8] Z. Li, W. Zeng, Q. Li, SnO2 as a Gas Sensor in Detection of Volatile Organic Compounds: A review, Sensors Actuators A Physical, Vol. 346, 2022, pp. 113845, https//doi.org/10.1016/j.sna.2022.113845.
[9] V. Janakiraman, V. Tamilnayagam, R. S. Sundararajan, S. Suresh, C. S. Biju, Structural and Optical Properties of Pure SnO2 and V2O5/SnO2 Nanocomposite Thin Filmsbfor Gas Sensing Application, Journal of Materials Science: Materials in Electronics, Vol. 31, 2020, pp. 15477-15488, https//doi.org/10.1007/s10854-020-04110-2.
[10] W. C. Ko, K. M. Kim, Y. J. Kwon, H. Choi, J. K. Park, Y. K. Jeong, ALD-assisted Synthesis of V2O5 Nanoislands on SnO2 Nanowires for Improving NO2 Sensing Performance, Applied Surface Science, Vol. 509, 2020,
pp. 144821, https//doi.org/10.1016/j.apsusc.2019.144821.
[11] F. Zhang, X. Wang, J. Dong, N. Qin, J. Xu, Selective BTEX sensor based on a SnO2/V2O5 composite, Sensors Actuators B Chemical, Vol. 186, 2013, pp. 126-131, https//doi.org/10.1016/j.snb.2013.05.086.
[12] L. Van Duy, T. T. Nguyet, D. T. T. Le, N. V. Duy, H. Nguyen, F. Biasioli, M. Tonezzer, C. D. Natale, N. D. Hoa, Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets Towards Food Spoilage Monitoring, Nanomaterials, Vol. 13, Issue 1, 2023, pp. 146, pp. 1-18, https//doi.org/0.3390/nano13010146.
[13] D. H. Yen, L. Tran, N. Phu, D. Thi, T. Le, Synthesis of Tungsten Oxide Nanofibers Using Electrospinning Towards Gas Sensor Application, Vol. 41, No. 2, 2025, pp. 84-91, https//doi.org/10.25073/2588-1124/vnumap.4993.