Hydrothermal Synthesis and Gas Sensing Performance of Spinel-type SnFe2O4 Nanomaterials: Influence of Synthesis Condition
Main Article Content
Abstract
Gas sensors play a crucial role in ensuring safety across environmental, industrial, and healthcare sectors, thereby driving demand for cost-effective materials with high sensing performance. In this study, spinel-type SnFe₂O₄ nanomaterials were successfully synthesized via a hydrothermal method at different temperatures (180 °C, 200 °C, and 220 °C), followed by calcination at 500 °C, to investigate the effects of synthesis conditions on their microstructural characteristics and gas sensing behavior. X-ray diffraction (XRD) analysis confirmed the formation of single-phase spinel SnFe₂O₄ with high crystallinity, while SEM images revealed a clear evolution of morphology from irregular agglomerates at 180 °C to uniform spherical nanoparticles at 200 °C, and well-defined cubic structures at 220 °C. Gas sensors fabricated from these nanomaterials exhibited high sensitivity and stable performance toward the target gases, demonstrating the potential of SnFe₂O₄ for practical sensing applications. The results highlight the critical role of hydrothermal temperature in tailoring particle morphology and optimizing the functional properties of SnFe₂O₄. These findings suggest that SnFe₂O₄ is a promising candidate for next-generation gas sensors, particularly in industrial monitoring and environmental protection.
References
http://doi.org/ 10.1016/j.snb.2024.136841.
[2] M. Hjiri, N. Benmansour, F. M. Barakat, G. Neri, Metal Oxide Gas Sensors with Nanosheet Morphology: A review,” Microchem. J., Vol. 215, No. 6, 2025, pp. 114510-114522, http://doi.org/10.1016/j.microc.2025.114510.
[3] L. Miranda, C. Duc, N. Redon, J. Pinheiro, B. Dorizzi, J. Montalvao, M. Verriele, J. Boudy, Automatic Detection of Indoor Air Pollution-related Activities using Metal-oxide Gas Sensors and the Temporal Intrinsic Dimensionality Estimation of Data, Indoor Environ., Vol. 1, No. 3, 2024, pp. 100026-100037,
http://doi.org/ 10.1016/j.indenv.2024.100026.
[4] S. Yu, X. Jia, J. Zhang, W. Yang, H. Song, Recent Advances in Different Materials for Moisture Resistance of Metal Oxide-based Gas Sensors: A Review, Chem. Eng. J., Vol. 505, No. 2, 2025, pp. 159639-159654, http://doi.org/10.1016/j.cej.2025.159639.
[5] A. Afzal, β-Ga2O3 Nanowires and Thin Films for Metal Oxide Semiconductor Gas Sensors: Sensing Mechanisms and Performance Enhancement Strategies, J. Mater., Vol. 5, No. 4, 2019, pp. 542-557, http://doi.org/10.1016/j.jmat.2019.08.003.
[6] N. Van Hoang, C. M. Hung, N. D. Hoa, N. V. Duy, N. V. Hieu, Facile on-chip Electrospinning of ZnFe2O4 Nanofiber Sensors with Excellent Sensing Performance to H2S Down ppb Level, J. Hazard. Mater., Vol. 360,
No. 6, 2018, pp. 6-16, http://doi.org/10.1016/j.jhazmat.2018.07.084.
[7] N. H. Hanh, L. V. Duy, C. M. Hung, C. T. Xuan, N. V. Duy, N. D. Hoa, High-Performance Acetone Gas Sensor based on Pt–Zn2SnO4 Hollow Octahedra for Diabetic Diagnosis, J. Alloys Compd., Vol. 886, 2021,
pp. 161284- 161295, http://doi.org/10.1016/j.jallcom.2021.161284.
[8] Q. Luo, Y. Wan, Z. Wang, S. Gao, Y. Chen, C. Feng, Excellent-Performing Gas Sensor based on Yttrium-Doped ZnFe2O4 Nanofibers for Detection of n-Butanol, J. Alloys Compd., Vol. 1027, No. 3, 2025, pp. 180605-180616, http://doi.org/10.1016/j.jallcom.2025.180605.
[9] Z. Zheng, K. Liu, Y. Zhou, Z. Zhang, H. Su, X. Nie, M. Debliquy, Z. Yu, C. Zhang, Spinel Type MCo2O4 (M = Mn, Mg, Ni, Cu, Fe and Zn) for Chemoresistance Gas Sensors, Mater. Today Chem., Vol. 36, No. 112023, 2024, http://doi.org/10.1016/j.mtchem.2024.101928.
[10] H. Han, Y. Luo, Y. Jia, N. Hasan, C. Liu, A Review on SnFe2O4 and their Composites: Synthesis, Properties, and Emerging Applications, Prog. Nat. Sci. Mater. Int., Vol. 32, No. 5, 2022, pp. 517-527, http://doi.org/10.1016/j.pnsc.2022.09.005.
[11] F. C. Zhou, Y. H. Sun, S. Liu, J. M. Nan, Synthesis of SnFe2O4 as a Novel Anode Material for Lithium-ion Batteries, Solid State Ionics, Vol. 296, 2016, pp. 163-167, http://doi.org/10.1016/j.ssi.2016.09.019.
[12] M. Ashan, H. A. Alyousef, A.W. Alrowaily, B. M. Alotaibi, N. A. Harbi, H. H. Somaily, M. Aslam, K. Ahmad, and S. Aman, Maximizing the Electrochemical efficiency of Ce Doped SnFe2O4 through Hydrothermal Route for Supercapacitor Applications, Electrochim. Acta, Vol. 504, No. 7, 2024, pp. 144840-144852, http://doi.org/10.1016/j.electacta.2024.144840.
[13] L. V. Thong, L. T. N. Loan, and N. V. Hieu, “Comparative Study of Gas Sensor Performance of SnO2 Nanowires and their Hierarchical Nanostructures,” Sensors Actuators, B Chem., Vol. 150, No. 1, 2010, pp. 112–119, http://doi.org/10.1016/j.snb.2010.07.033.
[14] V. T. Duoc, H. Nguyen, T. M. Ngoc, C. T. Xuan, C. M. Hung, N. V. Duy, N. D. Hoa, Hydrogen Gas Sensor based on Self-heating Effect of SnO2/Pt Thin Film with Ultralow Power Consumption, Int. J. Hydrogen Energy, Vol. 61, No. 3, 2024, pp. 774-782, http://doi.org/10.1016/j.ijhydene.2024.02.180.
[15] P. Ghosh, A. Mukherjee, M. Fu, S. Chattopadhyay, P. Mitra, Influence of Particle Size on H2 and H2S Sensing Characteristics of Nanocrystalline Nickel Ferrite, Phys. E Low-Dimensional Syst. Nanostructures, Vol. 74, 2015, pp. 570-575, http://doi.org/10.1016/j.physe.2015.08.023.