Dang Van Trong, Chu Van Lanh, Vo Thi Hong Yen, Nguyen Huy Hoang, Chu Van Ben

Main Article Content

Abstract

We present a novel study on the dispersion properties of suspended-core fibers fabricated from arsenic selenide glass infiltrated with carbon disulfide. This specific fiber structure, to our knowledge, has not been studied previously. By replacing air holes with carbon disulfide, a significant modification of the dispersion characteristics is achieved, providing flattened and close-to-zero dispersion characteristics in both dispersion regimes. This unique dispersion engineering makes CS₂-infiltrated As₂Se₃ suspended-core fibers highly promising for generating smooth and broadband supercontinuum spectra in the near-infrared region. These results highlight the unexplored potential of this suspended-core fibers for advanced nonlinear photonic applications.

Keywords: Photonic crystal fibers, Suspended-core fibers, Dispersion.

References

[1] K. Gauthron, J. S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. J. Zhang, A. Brehier, L. Largeau,
O. Mauguin, J. Bloch, E. Deleporte, Optics Express, Vol. 18, 2010, pp. 5912–5919, https://doi.org/10.1364/OE.18.005912.
[2] Y. Cho, B. Park, J. Oh, M. Seo, K. Lee, C. Kim, T. Lee, D. H. Woo, S. Lee, H. M. Kim, H. J. Lee, K. Oh, D. I. Yeom, S. R. Dugasani, S. H. Park, J. H. Kim, Optics Express, Vol. 23, No. 10, 2015, pp. 13537-13544, https://doi.org/10.1364/OE.23.013537.
[3] J.C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, Science, Vol. 282, No. 5393, 1998, pp. 1476-1478, https://doi.org/10.1126/science.282.5393.1476.
[4] R. F. Cregan, B. J. Mangan, C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, Science, Vol. 285, No. 5433, 1999, pp. 1537-1579, https://doi.org/10.1126/science.285.5433.1537.
[5] T. T. Alkeskjold, PhD Thesis, Department of Communication, Optics & Materials, Technical University of Denmark, 2005.
[6] J. M. Dudley, G. Genty, S. Coen, Reviews of Modern Physics, Vol. 78, 2006, pp. 1135-1184, https://doi.org/10.1103/RevModPhys.78.1135
[7] W. Jin, J. Ju, H. L. Ho, Y. L. Hoo, A. Zhang, Frontiers of Optoelectronics, Vol. 6, 2013, pp. 3-24, https://doi.org/10.1007/s12200-012-0301-y.
[8] G. Stepniewski, R. Kasztelanic, D. Pysz, R. Stepien, M. Klimczak, R. Buczynski, Optical Materials Express,
Vol. 6, No. 8, 2016, pp. 2689-2703, https://doi.org/10.1364/OME.6.002689.
[9] L. Dong, B. K. Thomas, L. Fu, Optics Express, Vol. 16, 2008, pp. 16423, https://doi.org/10.1364/OE.16.019629.
[10] A.Yu, Chamorovskiy, S. A. Nikitov, Journal of Communications Technology and Electronics, Vol. 58, 2013,
pp. 879-890, https://doi.org/10.1134/S1064226913060053.
[11] B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, A. Y. Cho, Optics Express, Vol. 12 (1), 2014, pp. 208-219, https://doi.org/10.1364/OPEX.12.000208.
[12] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., Academic Press, New York, 2007.
[13] A. Schliesser, N. Picqué, T. W. Hänsch, Nature Photonics, Vol. 6, 2012, pp. 440-449, https://doi.org/10.1038/nphoton.2012.142
[14] R. Wilson, H. Tapp, TrAC Trends in Analytical Chemistry, Vol. 18 (2), 1999, pp. 85-93, https://doi.org/10.1016/S0165-9936(98)00107-1.
[15] P. Domachuk, N. A. Wolchover, M. C. Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, F. G. Omenetto, Optics Express, Vol. 16, 2008, pp. 7161-7168, https://doi.org/10.1364/OE.16.007161.
[16] C. Xia et al., IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, 2009, pp. 422, https://doi.org/10.1109/JSTQE.2008.2010233
[17] R. Buczynski, H.T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, M. R. Taghizadeh, Laser Physics Letters, Vol. 7 (9), 2010, pp. 666, https://doi.org/10.1002/lapl.201010039.
[18] H. L. Van, V. C. Long, H. T. Nguyen, A. M. Nguyen, R. Buczynski, R. Kasztelanic, Laser Physics, Vol. 28 (11), 2018, 115106, https://doi.org/10.1088/1555-6611/aad93a.
[19] V.T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stȩpniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T. R. Woliński, M. Trippenbach, K.D. Xuan, M. Śmietana, R. Buczyński, Optical Materials Express, Vol. 9, 2019, pp. 2264-2278, https://doi.org/10.1364/OME.9.002264.
[20] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, J. Pniewski, Laser Physics, Vol. 30, 2020, 035105, https://doi.org/10.1088/1555-6611/ab6f09
[21] T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, Sensing with Microstructured Optical Fibres, Measurement Science and Technology, Vol. 12, No. 7, 2001, pp. 854-858, https://doi.org/10.1088/0957-0233/12/7/318.
[22] K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, H. N. Rutt, Electronics Letters, 2002, https://doi.org/10.1049/el:20020421.
[23] V. V. R. K. Kumar, A. K. George, J. C. Knight, P. J. Russell, Optics Express, 2003, https://doi.org/10.1364/OE.11.002641.
[24] A. S. Webb, F. Poletti, D. J . Richardson, J. K. Sahu, Optical Engineering, 2007, https://doi.org/10.1117/1.2430505.
[25] O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, A. B. Ribeiro, Suspended-core Fibers for Sensing Applications, Photonic Sensors, Vol. 2, No. 2, 2012, pp. 118-126, https://doi.org/10.1007/s13320-012-0058-3.
[26] I. Shavrin, S. Novotny, H. Ludvigsen, Optics Express, 2013, https://doi.org/10.1364/OE.21.032141.
[27] A. Hartung, A. M. Heidt, H. Bartelt, Optics Express, 2011, https://doi.org/10.1364/OE.19.012275.
[28] X. Zou, T. Izumitani, Journal of Non-Crystalline Solids, 1993, https://doi.org/10.1016/0022-3093(93)90742-G.
[29] M. Klimczak, B. Siwicki, P. Skibinski et al., Mid-infrared Supercontinuum Generation in Soft-Glass Suspended Core Photonic Crystal Fiber, Optical and Quantum Electronics, Vol. 46, 2014, pp. 563-571, https://doi.org/10.1007/s11082-013-9802-1.
[30] U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. L. Davies, O. Bang, Multi-milliwatt Mid-infrared Supercontinuum Generation in A Suspended Core Chalcogenide Fiber, Optics Express, Vol. 23, No. 3, 2015, pp. 3282-3291, https://doi.org/10.1364/OE.23.003282.
[31] C. T. Le, T. H. Van, H L. Van, D. Pysz, V. C. Long, T. B. Dinh, D. T. Nguyen, Q. H. Dinh, M. Klimczak, R. Kasztelanic, J. Pniewski, R. Buczyński, K. X. Dinh, Supercontinuum Generation in All-normal Dispersion Suspended Core Fiber Infiltrated with Water, Optical Materials Express, Vol. 10, No. 7, 2020, pp. 1733-1748, https://doi.org/10.1364/OME.395936.
[32] R. Ahmad, Mid-infrared Supercontinuum Generation in Liquid-filled Chalcogenide Suspended Core Fiber, Photonics and Nanostructures - Fundamentals and Applications, Vol. 52, 2022, pp. 101080, https://doi.org/10.1016/j.photonics.2022.101080.
[33] T.N. Thi, L.C. Van, Supercontinuum Generation Based on Suspended Core Fiber Infiltrated with Butanol, Journal of Optics, Vol. 52, 2023, pp. 2296-2305, https://doi.org/10.1007/s12596-023-01323-6.
[34] K. D. Xuan, C.V. Lanh, V. C. Long, Q. H. Dinh, L. V. Xuan, M. Trippenbach, R. Buczyński, Dispersion Characteristics of a Suspended-core Optical Fiber Infiltrated with Water, Applied Optics, Vol. 56, No. 4, 2017, pp. 1012-1019, https://doi.org/10.1364/AO.56.001012.
[35] B. C. Van, M. D. Ngoc, V. C. Long, H. N. Tuan, H. L. Van, Simulation Study of Mid-infrared Supercontinuum Generation at Normal Dispersion Regime in Chalcogenide Suspended-core Fiber Infiltrated with Water, Communications in Physics, Vol. 30, No. 2, 2020, p. 151, https://doi.org/10.15625/0868-3166/30/2/14857.
[36] B. Ung, M. Skorobogatiy, Chalcogenide Microporous Fibers for Linear and Nonlinear Applications in the Mid-infrared, Optics Express, Vol. 18, 2010, pp. 8647-8659.
[37] A. I. Konyukhov, E. A. Romanova, V. S. Shiryaev, Chalcogenide Glasses as a Medium for Controlling Ultrashort IR Pulses: Part I, Optics and Spectroscopy, Vol. 110, 2011, pp. 442-448.
[38] Y. C. Li, Y. T. Kuo, P. Y. Huang, S. S. Yang, C. I. Lee, T. H. Wei, Thermal Lensing Effect of CS2 Studied with Femtosecond Laser Pulses, Physical Chemistry Chemical Physics, Vol. 17, 2015, pp. 24738-24747, https://doi.org/10.1039/C5CP01796C.
[39] H. H. Pham, D. T. Bao, Calculation of Electromagnetic Force and Temperature Distribution of Amorphous Transformers in Different Operating Modes by Finite Element Method, CTU Journal of Innovation and Sustainable Development, Vol. 16, No. 1, 2024, pp. 66-75, https://doi.org/10.22144/ctujoisd.2024.269.
[40] D. Komatitsch, R. Martin, An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for the Seismic Wave Equation, Geophysics, Vol. 72, No. 5, 2007, pp. SM155–SM167, https://doi.org/10.1190/1.2757586.
[41] S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Linear Refractive Index and Absorption Measurements of Nonlinear Optical Liquids in the Visible and Near-infrared Spectral Region, Optical Materials Express, Vol. 2, 2012, pp. 1588-1611, https://doi.org/10.1364/OME.2.001588.
[42] R. Cherif, A. B. Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland et al., Highly Nonlinear As2Se3-based Chalcogenide Photonic Crystal Fiber for Midinfrared Supercontinuum Generation, Optical Engineering, Vol. 49, No. 9, 2010, pp. 095002.
[43] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., Academic Press, New York, 2007.