Characterization of Organic Solar Cells Made from Hybrid Photoactive Materials of P3HT:PCBM/nc-TiO2
Main Article Content
Abstract
Abstract: Nanorod-like TiO2 was grown on Ti wafers by annealing at 700oC for 1.5h. Hybrid Organic Solar Cells (HOSC) were then prepared by using a nano hybrid material of P3HT:PCBM/nc-TiO2. The HOSC have the laminar structure of Al/P3HT:PCBM/TiO2/Ti, where P3HT:PCBM weremade by spincoating. Under illumination of the standard light wavelength (l = 470 nm), the polymer luminescence quenching was observed at the heterojunctions, resulting in the charge separation. With an illumination power of 56 mW/cm2, a best hybrid solar cell exhibited an open circuit voltage of 0.60 V, short cut current density of 4.60 mA/cm2, fill factor of 0.54 and photoelectrical conversion efficiency of 2.6 %. This suggests a useful application for fabricating “reverse” OSCs, where the illumination light goes-in through the windows of Al-electrode cathode, instead of the indium tin oxide (ITO). For these devices, the Ohmic contact of wires to metallic Ti-substrates can be made much better than to ITO electrode.
Keywords: Organic Solar cell (OSC); nanorod-like TiO2, P3HT:PCBM/nc-TiO2 heterojunctions; polymer quenching.References
[2] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid Nanorod, Polymer Solar Cells, Science 295 (2002) 2425.
[3] T. M. Petrella, P. D. Cozzoli, , M. L. Curri, , M. Striccoli, P. Cosma, G. M. Farinola, F. Babudri, F. Naso, A. Agostiano, TiO2 nanocrystals – MEH, PPV composite thin films as photoactive material, Thin Solid Films 451/452 (2004) 64.
[4] V. M. Burlakov, K. Kawata, H. E. Assender, G. A. D. Briggs, A. Ruseckas, I. D. W. Samuel, Discrete hopping model of exciton transport in disordered media, Phys. Rev. 72 (2005) 075206.
[5] P. S. Thomas, J. Kuruvilla, T. Sabu, Mechanical properties of titanium dioxide-filled polystyrene microcomposites, Mater. Lett. 58 (2004) 281.
[6] S. A. Choulis, M.K. Mathai, V.-E. Choong, Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices, Appl. Phys. Lett. (2006) 213503.
[7] S. A. Carter, J. C. Scott, J. Brock, Enhanced luminance in polymer composite light emitting diodes, J. Appl. Phys. 71(9) (1997) 1145.
[8] A. A. Madhavan, G. G. Kumar, S. Kalluri, J. Joseph, S. Nagarajan, S. Nair, K. R. V. Subramanian, A. Balakrishnan, Effect of Embedded Plasmonic Al Nanoparticles on Photocatalysis of Electrospun TiO2 Nanofibers, J. Nanosci. Nanotechnol. Vol. 12, 2012, pp. 7963 – 7967.
[9] B. C. Thompson, J. M. J. Frehet, Polymer–Fullerene Composite Solar Cells, Angew. Chem. Int. Ed. 47 (2008) 58.
[10] S. Ren, L. Y. Chang, S. K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, S. Gradecak, Inorganic–Organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires, Nano Letters 11 (2011) 3998.
[11] P. M. Allemand , A. Koch , F. Wudl , Y. Rubin , F. Diederich , M. M. Alvarez , S. J. Anz , R. L. Whetten, Two different fullerenes have the same cyclic voltammetry, J. Am. Chem. Soc. 113 (1991) 1050.
[12] N. N. Dinh, D. N. Chung, T. T. Thao, T. T. Chung Thuy, L. H. Chi, T. Vo-Van, Enhancement of performance of Organic Light Emitting Diodes by using Ti- and Mo-Oxide Nano Hybrid Layers, Materials Science and Applications, 4 (2013) 275.
[13] Y. C. Huang, Y. C. Liao, S. S. Li, M. C. Wu, C. W. Chen and W. F. Su, Study of the Effect of Annealing Process on the Performance of P3HT/PCBM Photovoltaic Devices Using Scanning-Probe Microscopy, Solar Energy Materials & Solar Cells 93 (2009) 888.
[14] S. Ulum, N. Holmes, D. Darwis, K. Burke, A. L. D. Kilcoyne, Xiaojing Zhou, W. Belcher; P. Dastoor, Determining the structural motif of P3HT:PCBM nanoparticulate organic photovoltaic devices, Solar Energy Materials & Solar Cells 110 (2013) 43.
[15] S. H. Yang, T. P. Nguyen, P. Le Rendu, C. S. Hsu, Optical and electrical properties of PPV/SiO2 and PPV/TiO2 composite materials, Composites Part A: Appl. Sci.Manufact. 36 (2005) 509.
[16] C.Y. Kuo, W.C. Tang, C. Gau, T.F. Guo, D.Z. Jeng, Ordered bulk heterojunction solar cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer, Appl. Phys. Lett. 93 (2008) 033303.
[17] G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, D. D. C. Bradley, Hybrid inorganic/organic semiconductor heterostructures with efficient non, radiative Förster energy transfer, Adv. Mater. 18 (2006) 334.