Huge on-Current Ferroelectric-Gate Thin Film Transistor with Solution-Processed Indium Tin Oxide Channel
Main Article Content
Abstract
Abstract: We have demonstrated ferroelectric-gate thin film transistors (FGTs) using solution-processed indium tin oxide (ITO) film as an oxide-semiconductor channel and Pb1.2Zr0.4Ti0.6O3 ferroelectric film as a gate insulator on a poly-crystalline 100-nm-STO/SiO2/Si substrate or a single-crystalline STO(111) wafer. The FGTs show a clear memory function with an on/off current ratio of more than 105 and a memory window of 2 V. It is interesting that even using solution-processed ITO channel, the saturated “on” current in the FGT reached as high as 4.6 mA at operation voltages of 8 V, corresponding to a field-effect mobility of 8.0 cm2/Vs, for the case of single-crystalline STO(111) wafer. The large “on” current is mainly due to the huge induced charge of the ferroelectric gate, compensated to the small mobility of the ITO channel.
Keywords: PZT, Thin film transistor (TFT), ferroelectric, ITO, FeRAM.
References
[2] Y. Kaneko, H. Tanaka, M. Ueda, Y. Kato, and E. Fujii, A dual-channel ferroelectric-gate field-effect transistor enabling NAND-type memory characteristics, IEEE Trans. Electron Devices, 58 (2011) 1311.
[3] Y. Kaneko, Y. Nishitani, M. Ueda, E. Tokumitsu, and Eiji Fujii, A 60 nm channel length ferroelectric-gate field-effect transistor capable of fast switching and multilevel programming, Appl. Phys. Lett., 99 (2011) 182902.
[4] M.W. Prins, S.E. Zinnemers, J.F.M. Cillessen, and J.B. Giesbers, Depletion-type thin-film transistors with a ferroelectric insulator, Appl. Phys. Lett., 70 (1997) 458.
[5] T. Miyasako, M. Senoo, and E. Tokumitsu, Appl. Phys. Lett., Ferroelectric-gate thin-film transistors using indium-tin-oxide channel with large charge controllability, 86 (2005) 162902.
[6] T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, D. Wang, M. Miyasaka, and Y. Takeuchi, Solution-processed silicon films and transistors, Nature, 440 (2006) 783.
[7] D. Gupta, M. Anand, S.W. Ryu, Y.K. Choi, and S.H. Yoo, Nonvolatile memory based on sol-gel ZnO thin-film transistors with Ag nanoparticles embedded in the ZnO/gate insulator interface, Appl. Phys. Lett., 93 (2008) 224106.
[8] H.C. Cheng, C.F. Chen, and C.Y. Tsay, Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method, Appl. Phys. Lett., 90 (2007) 012113.
[9] G.H. Kim, B.D. Ahn, H.S. Shin, W.H. Jeong, H.J. Kim, and H.J. Kim, Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors, Appl. Phys. Lett., 94 (2009) 233501.
[10] C.G. Choi, S.J. Seo, and B.S. Bae, Solution-processed indium-zinc oxide transparent thin-film transistor, Electrochem. Solid-State. Lett., 11 (2008) H7.
[11] D. H. Lee, Y.J. Chang, G.S. Herman, and C.H. Chang, A General Route to Printable High-Mobility Transparent Amorphous Oxide Semiconductors, Adv. Mater. (Weinheim, Ger.), 19 (2007) 843.
[12] H.S. Kim, M.G. Kim, Y.G. Ha, M.G. Kanatzidis, T.J. Marks, and A. Facchetti, Low-Temperature Solution-Processed Amorphous Indium Tin Oxide Field-Effect Transistors, J. Am. Chem. Soc., 131 (2009) 10826.
[13] T. Miyasako, B.N.Q. Trinh, M. Onoue, T. Kaneda, P.T.Tue, E. Tokumitsu, and T. Shimoda, Totally solution-processed ferroelectric-gate thin-film transistor, Appl. Phys. Lett., 97 (2010) 173509.
[14] P.V. Thanh, B.N.Q. Trinh, T. Miyasako, P.T.Tue, E. Tokumitsu, and T. Shimoda, Electric Properties and Interface Charge Trap Density of Ferroelectric Gate Thin Film Transistor Using (Bi,La)4Ti3O12/Pb(Zr,Ti)O3 Stacked Gate Insulator, Jpn. J. Appl. Phys., 51 (2012) 09LA09.
[15] K. Nagahara, B.N.Q. Trinh, S. Inoue, E. Tokumitsu, and T. Shimoda, Fabrication of 120-nm-channel-length ferroelectric-gate thin-film transistor by nanoimprint lithography, Jpn. J. Appl. Phys., 53 (2014) 02BC14.