Trinh Thi Loan, Nguyen Ngoc Long

Main Article Content

Abstract

Abstract: Anatase TiO2 powders doped with 0.5, 1.0, 4.0 and 10 mol% Cr3+ have been prepared by hydrothermal method. The Cr3+ concentration and annealing effects on crystalline structure, absorption and photoluminescent spectra of the synthesized samples have been investigated. The band gap energy of anatase and rutile TiO2:Cr3+ powders with different dopant contents has been determined. Urbach energies (Eu) characterized for the structural disorder in the anatase and rutile TiO2 host lattice doped with Cr3+ ions also have been calculated with different impurity concentrations. At low annealing temperature (≤ 600 oC), the samples exhibited anatase phase and the photoluminescent spectra consisted of sharp peaks related to the 2E(2G) → 4A2(4F)transitions of ions Cr3+ in strong octahedral field. At high annealing temperature (1100 oC), the samples exhibited rutile phase and the photoluminescent spectra had a broad emission band, which was assigned to the 4T1(4F) → 4A2(4F) transitions within the Cr3+ ions in weak octahedral field.

Keywords: Anatase and rutile TiO2, Hydrothermal method, Absorption and Photoluminescent spectra.

References

[1] V. Kiisk, I. Sildos, O. Sild and J. Aarik, Optical Materials 27 (2004) 115–118.
[2] J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Applied Catalysis B: Environmental 62 (2006) 329–335.
[3] Honda S. Hafez, M. Saif, James T. McLeskey, Jr., M.S.A. Abdel-Mottaleb, I.S. Yahia, T. Story, and W. Knoff, International Journal of Photoenergy Vol. 2009 Article ID 240402.
[4] W.J. Yin, S. Chen, J.H. Yang, X.G. Gong, Y. Yan, and S.H. Wei, Applied Physics Letters 96 (2010) 221901.
[5] I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, and G. Sundararajan, The Scientific World Journal Vol. 2012, Article ID 127326.
[6] S. Valencia, J.M. Marin and G. Restrepo, The Open Materials Science Journal 4 (2010) 9-14.
[7] T. Ikeda, T. Momoto, K. Eda, Y. Mizutani, H. Kato, A. Kudo, and H. Onishi, J. Phys. Chem. C 112 (2008) 1167-1173.
[8] W. Xin, D. Zhu, G. Liu, Y. Hua, and W. Zhou, International Journal of Photoenergy Vol. 2012 Article ID 767905.
[9] W.J. Yin, H. Tang, S.H. Wei, M.M. Al-Jassim, J. Turner, and Y. Yan, Physical Review B 82 (2010) 045106.
[10] [10] C. Koepke, K. Wisniewski, M. Grinberg, D.L. Russell, K. Holliday and G.H. Beall, J. Lumin. 78 (1998) 135-146.
[11] W. Nie, Michel-calendini, C. Linare, G. Boulon and C. Daul, J. Lumin. 46 (1990) 177-190.
[12] D.L. Wood, G.F. Imbusch, R.M. Macfarlane, P. Kisliuk and D.M. Larkin, J. Chem. Phys. 48 (1968) 5255-5263.
[13] Trinh Thi Loan, Le Hong Ha, Nguyen Ngoc Long, VNU Journal of Science, Mathematics –Physics 26 (2010) 37-42.
[14] S.P. Feofilov, A.A. Kaplyanskii, R.I. Zakharchenya, J. Lumin. 66&67 (1996) 349-357.
[15] C. Pan, S.Y. Chen and P. Shen, J. Cryst. Growth 310 (2008) 699-705.
[16] Trinh Thi Loan, Le Hong Ha, Nguyen Ngoc Long, e-J. Surf. Sci. Nanotech. 9 (2011) 531-535.
[17] Trinh Thi Loan, Nguyen Ngoc Long, Nguyen Hung Cuong, Communications in Physics, Vol. 22, No. 3 (2012, 239-246.
[18] D.P. Ma, D.E. Ellis, J. Lumin. 71 (1997) 329-339.
[19] M.B. ONeill, P.N. Gibson and B. Henderson, J. Lumin. 42 (1988) 235-243.
[20] H.G. Kim, J.S. Bae, M.G. Ha, T.E. Hong, J.S. Jin, E.D. Jeong and K.S. Hong, Journal of Korean Physical Society 53, No.5 (2008) 2688-2691.
[21] K.B. Jaimy, S. Ghosh, S. Sankar, K.G.K. Warrier, Materials Research Bulletin 46 (2011) 914-921.
[22] W.Y. Tian, X.Y. Kuang, M.L. Duan, R.P. Chai and C.X. Zhang, Physica B 404 (2009) 4332-4336.
[23] Y. Nagao, A. Yoshikawa, K. Koumot, T. Kato, Y. Ikuhara, H. Ohta, Appl. Phys. Lett. 97 (2010) 172112.
[24] A. Hajjaji, A. Atyaoui, K. Trabelsi, M. Amlouk, L. Bousselmi, B. Bessais, M.A.E. Khakani and M. Gaidi, American Journal of Analytical Chemistry 5 (2014) 473-482.
[25] B. Choudhury, M. Dey and A. Choudhury, International Nano Letters 3 No.1 (2013) 1-8.
[26] C.E. Ekuma, D. Bagayoko, Japanese J. Appl. Phys. 50 (2011) 101103.