Dao Viet Thang, Du Thi Xuan Thao, Nguyen Van Minh

Main Article Content

Abstract

Abstract: Y - doped BiFeO3 materials were prepared by a sol – gel method. X-ray diffraction (XRD) meansurement has been carried out to characterize crystal structure and to detect the impurities existing in these materials. The results showed that both lattice constants a and c of the unit cell of BiFeO3 substance become smaller as the Y3+ content is increased. The effect of introducing Y3+ was to decrease the optical band gap for doped samples Bi1−xYxFeO3 (x = 0.00  0.20). Magnetic properties of Y-doped BiFeO3 were investigated by vibrating sample magnetometer (VSM) measurements at room temperature, using maximum magnetic field of about 10 kOe. These materials exhibited a weak ferromagnetic behavior and magnetization of the  sample was improved as presence of  Y3+ ions. When x = 0.15, 0.20, structural and magnetic properties change sharply. Y doping BiFeO3 material modifies its physical properties.

References

[1] W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, (2006) 759 - 765.
[2] K.S. Nalwa, A. Grag, and A. Upadhyaya, Mater. Lett. 62, (2008) 878.
[3] S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming, and X. Q. Pan, Appl. Phys. Lett. Vol. 88, (2006) 162901.
[4] S. R. Das, R. N. P. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, and M. S. Seehra, J. Appl. Phys. 101, (2007) 034104.
[5] G.L. Yuan, and S.W. Or, J. Appl. Phys. 100, (2006) 024109.
[6] G.L. Yuan, W. Siu, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 89, (2006) 052905.
[7] P. Uniyal, and K.L. Yadav, Mater. Lett. 62, (2008) 2858.
[8] Hou Z.L., Zhou H.F., Yuan J., Kang Y.Q., Yang H.J., Jin H.B., and Cao M.S., Chin. Phys. Lett. 28, (2011) 037702.
[9] X. Zhang, Y. Sui, X. Wang, and Y. Wang, J. Alloys Compd. 507, (2010) 157.
[10] J. Xu, G. Wang, H. Wang, D. Ding, and Y. He, Mater. Lett. 63, (2009) 855-857.
[11] Feng B.L., Xue H., and Xiong Z.X., Mater. Sci. 55, (2010) 452−456.
[12] A. Gaur, P. Singh, N. Choudhary, D. Kumar, M. Shariq, K. Singh, N. Kaur, and D. Kaurn, Phys. B406, (2011) 1877–1882.
[13] Singh MK, Jang HM, Ryu S, and Jo MH, Appl. Phys. Lett. 88, (2006) 042907.
[14] H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, and M. Miyayama, J. Magn. Magn. Mater. 310, (2007) 367.
[15] A. Gautam, K. Singh, K. Sen, R.K. Kotnala, and M. Singh, Mater. Lett. 65, (2011) 591-594.
[16] M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, Appl. Phys. Lett., 91, (2007) 071910.
[17] Z. Liu, Y. Qi, and C. Lu, Mater. Electron. 21, (2010) 380 - 384.
[18] J. Wei, D. Xue, and Y. Xu, Scripta Mater. 58, (2008) 45 - 48.
[19] M. Kumar, K.L. Yadav, and G.D. Varma, 2008. Mater. Lett. 62, (2008) 1159 - 1161.
[20] K. Liu, H. Fan, P. Ren, and C. Yang, J. Alloys Compd. 509, (2011) 1901–1905.
[21] A.J. Jacobson, and B.E.F. Fender, J. Phys. C: Solid State Phys. 8, (1975) 844.
[22] S.V. Kiselev, R.P. Ozerov, and G.S. Zhdanov, Sov. Phys. Dokl. 7, (1963) 742.
[23] Mishra R.K., Pradhan D.K., and Choudhary R N.P., J. Phys. Condens Matter. 20, (2008) 045218.
[24] L. Luo, W. Wei, X. Yuan, K. Shen, M. Xu, and Q. Xu, J. Alloys Compd. 540, (2012) 36–38.