Nguyen Van Hung, Duong Anh Tuan, Trinh Duc Thien, Nguyen Dang Phu, Danh Bich Do, Pham Van Vinh

Main Article Content

Abstract

Abstract. CdTe quantum dots dispersed in water were prepared successfully by the microwave irradiation method. The influence of the pH value of the solution precursor, irradiation time and microwave power on the structure, size and optical properties of CdTe quantum dots was investigated. The fluorescence of CdTe quantum dots studies were illustrated that the samples which were synthesized at pH value of 7 exhibited the best fluorescence. The absorption, fluorescence spectra and TEM images showed that the microwave power and the irradiation time influenced significantly on the size of CdTe quantum dot as well as their optical properties. The fluorescence spectra were red-shift with the increase of the irradiation time and microwave power.

Keywords: CdTe, Quantum dots, optical properties.

References

[1] N. C. Greenham, X. Peng, and A. P. Alivisatos, “Charge separation and transport in conjugated–polymer/semiconductor–nanocrystal composites studied by photoluminescence quenching and photoconductivity,” Phys. Rev. B 54 (1996) 17628–17637.
[2] L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly Luminescent CuInS2/ZnS Core/Shell anocrystals: Cadmium–Free Quantum Dots for In Vivo Imaging,” Chem. Mater 21 (2009) 2422–2429.
[3] M. Shim and P. G. Sionest, “Permanent dipole moment and charges in colloidal semiconductor quantum dots,” J. Chem. Phys. 111 (1999) 6955–6964.
[4] M. Frasco and N. Chaniotakis, “Semiconductor Quantum Dots in Chemical Sensors and Biosensors,” Sensors 9 (2009) 7266-7286.
[5] S. K. Mahto, C. Park, T. H. Yoon, and S. W. Rhee, “Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells,” Toxicology in Vitro 24 (2010) 1070-1077.
[6] T. Yu, J. S. Shen, H. H. Bai, L. Guo, J. J. Tang, Y. B. Jiang, and J. W. Xie, “A photoluminescent nanocrystal-based signaling protocol highly sensitive to nerve agents and highly toxic organophosphate pesticides,” Analyst 134 (2009) 2153-2157.
[7] C. Zhou, H. Shen, Y. Guo, L. Xu, J. Niu, Z. Zhang, Z. Du, J. Chen, and L. S. Li, “A versatile method for the preparation of water-soluble amphiphilic oligomer-coated semiconductor quantum dots with high fluorescence and stability,” Journal of Colloid and Interface Science 344 (2010) 279-285.
[8] V. P. Singha, R. S. Singha, G. W. Thompsona, V. Jayaramana, S. Sanagapallia, and V. K. Rangari, “Characteristics of nanocrystalline CdS films fabricated by sonochemical, microwave and solution growth methods for solar cell applications,” Solar Energy Materials & Solar Cells 81 (2004) 293–303.
[9] M. P. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “,Semiconductor nanocrystals as fluorescent biological labels,” Science 281 (1998) 2013-2016.
[10] W. C. W. Chan, S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281 (1998) 2016-2018.
[11] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307 (2005) 538-544.
[12] D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals,” J. Phys. Chem. B 105 (2001) 2260-2263.
[13] L. Qu and X. Peng, “Control of Photoluminescence Properties of CdSe Nanocrystals in Growth,” J. Am. Chem. Soc. 124 (2002) 2049-2055.
[14] W. W. Yu, Y. A. Wang, X. Peng, “Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals:  Ligand Effects on Monomers and Nanocrystals,” Chem. Mater. 15 (2003) 4300-4308.
[15] T. Rajh, O. Micic, and A. Nozik, “Synthesis and characterization of surface-modified colloidal CdTe qunatum dots,” J. Phys. Chem. B 97 (1993) 11999-12003.
[16] N. Gaponik, D. Talapin, A. L. Rogach, K. Hoppe, E. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes,” J. Phys. Chem. B 106 (2002) 7177-7185.
[17] H. Zhang, L. Wang, H. Xiong, L. Hu, B. Yang, and W. Li, “Hydrothermal synthesis to high quality CdTe nanocrystals” Adv.Mater. 15 (2003) 1712-1715.
[18] M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, “Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without SiO2 Coating by Microwave Irradiation,” Langmuir 14 (1998) 6430-6435.
[19] H. Grisaru, O. Palchik, A. Gedanken, M. A. Slifkin, A. M. Weiss, V. Palchik, “Microwave-Assisted Polyol Synthesis of CulnTe2 and CulnSe2 Nanoparticles,” Inorg. Chem. 42 (2003) 7148.
[20] N. E. Leadbeater, “Fast, easy, clean chemistry by using water as a solvent and microwave heating: the Suzuki coupling as an illustration,” Chem. Commun. 23 (2005) 2881-2902.
[21] Yan Liu , Qihui Shen, Dongdong Yu, Weiguang Shi, JixueLi, Jianguang Zhou and Xiaoyang Liu, “A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature”, Nanotechnology19 (2008) 245601 (6pp)