Nghiên cứu chế tạo vật liệu compozit GO/Fe3O4 và ứng dụng để xử lý As(III) trong môi trường nước
Main Article Content
Abstract
Tóm tắt: Vật liệu nano composite graphen oxit/Fe3O4 tổng hợp từ graphen oxit bằng phương pháp đồng kết tủa được sử dụng để loại bỏ As(III) trong môi trường nước. Bằng phương pháp kết tủa hóa học, các hạt nano Fe3O4 kích thước cỡ khoảng 22 nm đã phân tán đồng nhất lên trên bề mặt GO. Vật liệu tổng hợp được đặc trưng bằng các phổ SEM, IR, X-Ray diffraction, EDX, BET, TGA. Kết quả khảo sát khả năng hấp phụ asen của các vật liệu cho thấy dung lượng hấp phụ cực đại của GO/Fe3O4, Fe3O4 và GO tương ứng là 85,5 mg/g, 24,4 mg/g và 3,6 mg/g.
Từ khoá: Graphen oxit, oxit sắt từ, composite, hấp phụ, As(III).
References
Tài liệu tham khảo
[1] Chirangano Mangwandi, Siti N.A. Suhaimi, Jiang T. Liu, Ranjit M. Dhenge, Ahmad B. Albadarin (2016), Design, production and characterisation of granular adsorbent material for arsenic removal from contaminated wastewater, Chemical Engineering Research and Design110, pp 70-81.
[2] A. Abejón, A. Garea, , A. Irabien (2015), “Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption”, Separation and Purification Technology 144,
pp 46-53.
[3] Emilijan Mohora, Srdjan Rončević, Jasmina Agbaba, Aleksandra Tubić, Milena Mitić, Mile Klašnja, Božo Dalmacija (2014), “Removal of arsenic from groundwater rich in natural organic matter (NOM) by continuous electrocoagulation/flocculation (ECF)”, Separation and Purification Technology 136, pp 150-156.
[4] Tomohito Kameda, Youhei Suzuki, Toshiaki Yoshioka (2014), “Removal of arsenic from an aqueous solution by coprecipitation with manganese oxide”, Journal of Environmental Chemical Engineering 2 (4), pp 2045-2049.
[5] Yoon-Young Chang, Seung-Mok Lee, Jae-Kyu Yang (2009), “Removal of As(III) and As(V) by natural and synthetic metal oxides”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 346 (1-3), pp 202-207.
[6] Jing Lan (2015), Removal of arsenic from aqueous systems by use of magnetic Fe3O4 nanoparticles, Research on Chemical Intermediates 41(6), pp 3531-3541.
[7] J. T. Mayo, et al. (2008), “The Effect of Nano Crystalline Magnetite Size on Arsenic Removal,” Journal of Science and Technology Materials 8, pp. 71-75.
[8] F. Rosada, M. Otero, A. Moran, and A. I. Garcia (2008), “Adsorption of Heavy Metals onto Sewage Sludge-Derived Materials,” Bioresour Technology 99, pp. 6332-6338.
[9] F B. A. Bolto (1990), “Magnetic Particle Technology for Wastewater Treatment,” Waste Management 10, pp. 11-21.
[10] Sekhar C. Ray (1015), “Applications of Graphene and Graphene-Oxide Based Nanomaterials”, Micro and NanoTechnologies.
[11] Yueming Ren, Ni Yan, Qing Wen, Zhuangjun Fan, Tong Wei, Milin Zhang, Jun Ma (2011), “Graphene/MnO2 composite as adsorbent for the removal of nickel ions from wastewater”, Chemical Engineering Journal 175, pp1-7.
[12] S. Varma, D. Sarode, S. Wakale, B.A. Bhanvase, M. P. Deosarkar (2013), “Removal of Nickel from Waste Water Using Graphene Nanocomposite”, International Journal of Chemical and Physical Sciences 2 (Special Issue), pp 132-139.
[13] Daniela C. Marcano, Dmitry V. Kosynkin, Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, Alexander Slesarev, Lawrence B. Alemany, Wei Lu, and James M. Tour (2010), “Improved Synthesis of Graphene Oxide”, ACS Nano4 (8), pp 4806-4814.
[1] Chirangano Mangwandi, Siti N.A. Suhaimi, Jiang T. Liu, Ranjit M. Dhenge, Ahmad B. Albadarin (2016), Design, production and characterisation of granular adsorbent material for arsenic removal from contaminated wastewater, Chemical Engineering Research and Design110, pp 70-81.
[2] A. Abejón, A. Garea, , A. Irabien (2015), “Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption”, Separation and Purification Technology 144,
pp 46-53.
[3] Emilijan Mohora, Srdjan Rončević, Jasmina Agbaba, Aleksandra Tubić, Milena Mitić, Mile Klašnja, Božo Dalmacija (2014), “Removal of arsenic from groundwater rich in natural organic matter (NOM) by continuous electrocoagulation/flocculation (ECF)”, Separation and Purification Technology 136, pp 150-156.
[4] Tomohito Kameda, Youhei Suzuki, Toshiaki Yoshioka (2014), “Removal of arsenic from an aqueous solution by coprecipitation with manganese oxide”, Journal of Environmental Chemical Engineering 2 (4), pp 2045-2049.
[5] Yoon-Young Chang, Seung-Mok Lee, Jae-Kyu Yang (2009), “Removal of As(III) and As(V) by natural and synthetic metal oxides”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 346 (1-3), pp 202-207.
[6] Jing Lan (2015), Removal of arsenic from aqueous systems by use of magnetic Fe3O4 nanoparticles, Research on Chemical Intermediates 41(6), pp 3531-3541.
[7] J. T. Mayo, et al. (2008), “The Effect of Nano Crystalline Magnetite Size on Arsenic Removal,” Journal of Science and Technology Materials 8, pp. 71-75.
[8] F. Rosada, M. Otero, A. Moran, and A. I. Garcia (2008), “Adsorption of Heavy Metals onto Sewage Sludge-Derived Materials,” Bioresour Technology 99, pp. 6332-6338.
[9] F B. A. Bolto (1990), “Magnetic Particle Technology for Wastewater Treatment,” Waste Management 10, pp. 11-21.
[10] Sekhar C. Ray (1015), “Applications of Graphene and Graphene-Oxide Based Nanomaterials”, Micro and NanoTechnologies.
[11] Yueming Ren, Ni Yan, Qing Wen, Zhuangjun Fan, Tong Wei, Milin Zhang, Jun Ma (2011), “Graphene/MnO2 composite as adsorbent for the removal of nickel ions from wastewater”, Chemical Engineering Journal 175, pp1-7.
[12] S. Varma, D. Sarode, S. Wakale, B.A. Bhanvase, M. P. Deosarkar (2013), “Removal of Nickel from Waste Water Using Graphene Nanocomposite”, International Journal of Chemical and Physical Sciences 2 (Special Issue), pp 132-139.
[13] Daniela C. Marcano, Dmitry V. Kosynkin, Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, Alexander Slesarev, Lawrence B. Alemany, Wei Lu, and James M. Tour (2010), “Improved Synthesis of Graphene Oxide”, ACS Nano4 (8), pp 4806-4814.