Dao Thi Le Thuy, Le Nhu Thuc

Main Article Content


Abstract: The Randall-Sundrum (RS) model is one of the most attractive candidates to solve the gauge hierarchy problem in the Standard Model (SM). This is a model in five-dimensional space time with a warped extra spatial dimension compactified on the orbifold S1/Z2. This paper studies  the production of the radion and Z  boson in the  collision process with the polarization of the  beams. The study results show that the value of the differential cross-section is the greatest when the angle between the direction of the beam radion and beamapproximately 90 degrees for  and 180 degrees for . Based on the results, it is expected that the reaction can give observable cross-sections in Larger Hadron Collider (LHC) at a high degree of polarization.

Keywords: Higgs boson, radion, RS, cross-section, .


[1] N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D 61, 033005 (2000).
[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).
[3] W. D. Goldberger and M. B. Wise, “Modulus stabilization with bulk fields,” Phys. Rev. Lett. 83, 4922 (1999) [hep-ph/9907447].
[4] G. D. Kribs, “TASI 2004 lectures on the phenomenology of extra dimensions,” hep-ph/0605325.
[5] G. C. Cho and Y. Ohno, “Production and decay of radion in Randall-Sundrum model at a photon collider”, [arXiv:1404.1200v2 [hep-ph]] (2014).
[6] G. F. Giudice, R. Rattazzi and J. D. Wells, “Graviscalars from higher dimensional metrics and curvature Higgs mixing,” Nucl. Phys. B 595, 250 (2001) [hep-ph/0002178].
[7] C. Csaki, M. L. Graesser and G. D. Kribs, “Radion Dynamics and Electroweak Physics” Phys. Rev. D 63, 065002 (2001) [hep-th/0008151].
[8] D. Dominici, B. Grzadkowski, J. F. Gunion and M. Toharia, “The Scalar sector of the Randall-Sundrum model,” Nucl. Phys. B 671, 243 (2003) [hep-ph/0206192].
[9] N. Desai, U. Maitra and B. Mukhopadhyaya, “An updated analysis of radion-higgs mixing in the light of LHC data,” arXiv:1307.3765.
[10] M. Battaglia, S. De Curtis, A. De Roeck, D. Dominici and J. F. Gunion, “On the complementarity of Higgs and radion searches at LHC,” Phys. Lett. B 568, 92 (2003) [hep-ph/0304245].
[11] K. Cheung, C. S. Kim and J. -h. Song, “A Probe of the radion Higgs mixing in the Randall-Sundrum model at e+ e- colliders,” Phys. Rev. D 67, 075017 (2003) [hep-ph/0301002].
[12] G. Abbiendi et al. [OPAL Collaboration], “Search for radions at LEP2,” Phys. Lett. B 609, 20 (2005) [Erratum-ibid. B 637, 374 (2006)] [hep-ex/0410035].
[13] S. Bae, P. Ko, H. S. Lee and J. Lee, “Radion phenomenology in the Randall-Sundrum scenario,” hep-ph/0103187 and S. Bae, P. Ko, H. S. Lee and J. Lee, “Phenomenology of the radion in Randall-Sundrum scenario at colliders,” Phys. Lett. B 487, 299 (2000) [hep-ph/0002224].
[14] U. Mahanta and A. Datta, “Production of light stabilized radion at high-energy hadron collider,” Phys. Lett. B 483, 196 (2000) [hep-ph/0002183].
[15] T. D. Tham, N. H. Thao, D. V. Soa, D. T. L. Thuy, “Radion production in γe collision”, Modern Physics Letter A, Vol 27, No23, 2012, 1250126.
[16] B. T. H. Giang, D. T. L. Thuy, N. V. Dai, D. V. Soa, “Radion production in collisions”, Communications in Physics, Vol. 25, No. 1, pp. 45 - 50(2015).
[17] [17] D. T. L. Thuy, B. T. H. Giang, “Radion production in γμ- collisions”, VNU Journal of Science: Mathematics – Physics, Vol.31, No.3, pp. 49 - 56 (2015).2
[18] D. V. Soa, D. T. L. Thuy, B. T. H. Giang, “Production and decay of radion and Higgs in and collisers”, Juarnal of Physics: Conference Series 726 (2016) 012027.
[19] CMS Collaboration [CMS Collaboration], CMS-PAS-EXO-12-016.
[20] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. D 87, no. 11, 114015 (2013) [arXiv:1302.4794 [hep-ex]].
[21] S. A. Li, C. S. Li, H. T. Li and J. Gao, “Constraints on Randall-Sundrum model from the events of dijet production with QCD next-to-leading order accuracy at the LHC”, [arXiv:1408.2762v2 [hep-ph]] (2015).
[22] E. S. Reich “ Physicists plant to build a bigger LHC”, Nature News, Nature Publishing Group, Nov 12, 2013.