UV/IR phenomenon of Noncommutative Quantum Fields in Example
Main Article Content
Abstract
Noncommutative Quantum Field (NCQF) is a field defined over a space endowed with a noncommutative structure. In the last decade, the theory of NCQF has been studied intensively, and many qualitatively new phenomena have been discovered. In this article we study one of these phenomena known as UV/IR mixing.
Keywords: Noncommutative quantum field theory.
References
[1] M. R. Douglas and N. A. Nekrasov, Noncommutative Field Theory, Rev. Mod. Phys. 73, 977-1029 (2001).
[2] R. J. Szabo, Quantum Field Theory on Noncommutative Spaces, Phys. Rept. 378, 207 (2003).
[3] H. S. Snyder, Quantized Space-Time, Phys. Rev. 71, 38 (1947).
[4] A. Connes, Noncommutative Geometry, Academic Press, New York (1994).
[5] N. Seiberg and E. Witten, String Theory and Noncommutative Geometry, JHEP 9909, 32 (1999).
[6] S. Doplicher, K. Fredenhagen and J. E. Roberts, Spacetime quantization induced by classical gravity, Phys. Lett. B 331, 39 (1994); The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172, 187 (1995).
[7] T. Filk, Divergencies in a field theory on quantum space, Phys. Lett. B 376, 53 (1996).
[8] J. Gomis and T. Mehen, Space-Time Noncommutative Field Theories And Unitarity, Nucl. Phys. B 591, 265 (2000).
[9] M. Chaichian, K. Nishijima and A. Tureanu, Spin-Statistics and CPT Theorems in Noncommutative Field Theory, Phys. Lett. B 568, 146 (2003).
[10] M. Chaichian, P. Prešnajder and A. Tureanu, New Concept of Relativistic Invariance in Noncommutative Space-Time: Twisted Poincaré Symmetry and Its Implications, Phys. Rev. Lett. 94, 151602 (2005).
[11] M. E. Peskin, D. V. Schroeder, Introduction to Quantum Field Theory, 1995.
[12] I. Ya. Aref’eva, D. M. Belov, A. S. Koshelev, Two-Loop Diagrams in Noncommutative theory, Phys. Lett. B 476, 431 (2000).
[2] R. J. Szabo, Quantum Field Theory on Noncommutative Spaces, Phys. Rept. 378, 207 (2003).
[3] H. S. Snyder, Quantized Space-Time, Phys. Rev. 71, 38 (1947).
[4] A. Connes, Noncommutative Geometry, Academic Press, New York (1994).
[5] N. Seiberg and E. Witten, String Theory and Noncommutative Geometry, JHEP 9909, 32 (1999).
[6] S. Doplicher, K. Fredenhagen and J. E. Roberts, Spacetime quantization induced by classical gravity, Phys. Lett. B 331, 39 (1994); The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172, 187 (1995).
[7] T. Filk, Divergencies in a field theory on quantum space, Phys. Lett. B 376, 53 (1996).
[8] J. Gomis and T. Mehen, Space-Time Noncommutative Field Theories And Unitarity, Nucl. Phys. B 591, 265 (2000).
[9] M. Chaichian, K. Nishijima and A. Tureanu, Spin-Statistics and CPT Theorems in Noncommutative Field Theory, Phys. Lett. B 568, 146 (2003).
[10] M. Chaichian, P. Prešnajder and A. Tureanu, New Concept of Relativistic Invariance in Noncommutative Space-Time: Twisted Poincaré Symmetry and Its Implications, Phys. Rev. Lett. 94, 151602 (2005).
[11] M. E. Peskin, D. V. Schroeder, Introduction to Quantum Field Theory, 1995.
[12] I. Ya. Aref’eva, D. M. Belov, A. S. Koshelev, Two-Loop Diagrams in Noncommutative theory, Phys. Lett. B 476, 431 (2000).