Devraj Singh, Shivani Kaushik, Sunil Kumar Pandey, Giridhar Mishra, Vyoma Bhalla

Main Article Content

Abstract

Abstract: The temperature dependent ultrasonic parameters like ultrasonic attenuation, acoustic coupling constant, ultrasonic Grüneisen parameter and ultrasonic velocity at room temperature have been computed for neptunium monopnictides (NpX, where X=N, P, As, Sb). For the evaluation of ultrasonic parameters, the higher order elastic constants have been found out using Coulomb and Born-Mayer potential up to second nearest neighbour in the temperature range 0-300K. In addition to this, some mechanical constants like bulk modulus, Young’s modulus and Poisson’s ratio are also evaluated at room temperature to find their mechanical stability. The toughness to fracture ratio is found to be 0.571 which clearly shows brittle nature of NpX. Born criterion of mechanical stability is also followed by these materials. Neptunium nitride is most stable and durable material due to its high valued elastic constants. In present investigation, the thermal conductivity of these materials is also evaluated using Slack’s approach.  The ultrasonic attenuation due to thermoelastic relaxation mechanism is negligible in comparison to phonon-phonon interaction mechanism. The achieved investigation results on NpX materials are discussed and compared with other similar type of materials.

Keywords: Monopnictides, Elastic properties, Ultrasonic properties, Thermal conductivity.

References

[1] G. Vaitheeswaran, L. Petit, A. Svane, V. Kanchana, M. Rajagopalan M, Electronic structure of praseodymium monochalcogenides under pressure, Journal of Physics: Condensed Matter 16 (2004), 4429-4440.
[2] W. Feng, H. Hu, X. Xiao, S. Cui, Z. Lv, G. Zhang, C. Wu, First-principles study of phase transition and elastic properties of XBi (X = Ce, Pr) compounds, Computational Materials Science 53 (2012) 75.
[3] D. Singh, R. Kumar, D.K. Pandey, Temperature and Orientation Dependence of Ultrasonic Parameters in Americium Monopnictides, Advances in Materials Physics and Chemistry 1 (2011) 31.
[4] V. Bhalla, D. Singh, Anisotropic assessment of ultrasonic wave velocity and thermal conductivity in ErX (X:N, As), Indian Journal of Pure & Applied Physics 54 (2016) 40.
[5] I. Shirotani, J. Hayashi, K. Yamanashi, K. Hirano, T. Adachi, N. Ishimatsu, O. Shimomura, T. Kikegawa, X-ray study with synchrotron radiation of cerium and praseodymium monopnictides with the NaCl-type structure at high pressures, Physica B: Condensed Matter 334 (2003) 167.
[6] B. R. Cooper, G. J. Hu, N. Kioussis, J.M. Wills, Theory of anisotropic magnetic behavior in hybridizing actinide systems, Journal of Magnetism and Magnetic Materials 63 (1987) 121.
[7] K. Nakajima, Y. Arai, Y. Suzuki, Vaporization behavior of neptunium mononitride, Journal of Nuclear Materials 247 (1997) 33.
[8] J.P. Sanchez, P. Burlet, S. Quézel, D. Bonnisseau, J. Rossat-Mignod, J.C. Spirlet, J. Rebizant, O. Vogt, Mössbauer spectroscopy and neutron diffraction studies of neptunium antimonide NpSb, Solid State Communications 67 (1988) 999.
[9] R. Troc, Neptunium monochalcogenides: magnetic susceptibility. In Actinide Monochalcogenides, Volume 27B6b of the series Landolt-Börnstein - Group III Condensed Matter, Springer: Berlin Heidelberg, 2009.
[10] P.K. Jha, M. Aynyas, S.P. Sanyal, Structural phase transition and elastic properties of neptunium compounds at high pressure, Indian Journal of Pure and Applied Physics 42 (204) 112.
[11] D. Braithwaite, A. Demuer, I.N. Goncharenko, V. Ichas, J.M. Mignot, J. Rebizant C. Spirlet, O.Vogt, S. Zwirne, Pressure effects on magnetism in the uranium and neptunium monopnictides, Journal of Alloys & Compounds 271 (1998) 426.
[12] P. Wachter, M. Filzmoser, J. Rebizant, Electronic and elastic properties of the light actinide telluride, Physica B: Condensed Matter 293 (2001) 199.
[13] D. Singh, D.K. Pandey, D.K. Singh, R.R. Yadav, Propagation of ultrasonic waves in neptunium monochalcogenides, Applied Acoustics 72 (2011) 737.
[14] C.U.M. Trinath, M. Rajagopalan, S. Natarajan, A computational study of structural transition in NpAs and NpTe induced by pressure, Journal of Alloys & Compounds 274 (1998) 18.
[15] M.J. Longfield, J.A. Paixão, N. Bernhoeft, G.H. Lander, F. Wastin, J. Rebizant, Synchrotron radiation study of neptunium phosphide, Physical Review B 66 (2002) 134421.
[16] O. Vogt, K. Mattenberger, Magnetic measurements on rare earth and actinide monopnictides and monochalcogenides; In: K.A. Gschneidner, L. Eyring, G.H. Lander, G.R. Choppin, Eds., Handbook on the Physics and Chemistry of Rare Earths, Physics-I, Vol. 17, Ch. 1, Lanthanides/Actinides, North-Holland, Amsterdam, 1993.
[17] M. Born, J.E. Mayer, Zur Gittertheorie der Ionenkristalle, Zeitschrift für Physik 75 (1931) 1.
[18] S. Mori, Y. Hiki, Calculation of the third- and fourth-order elastic constants of alkali halide crystals, Journal of the Physical Society of Japan 45 (1975) 1449.
[19] G. Leibfried, H. Hahn, Zur Temperaturabhängigkeit der elastischen Konstanten von Alkalihalogenidkristallen, Zeitschrift für Physik 150 (1958) 497.
[20] P.B. Ghate, Third-order elastic constants of alkali halide crystals, Physical Review 139 (1965) A1666.
[21] V. Bhalla, D. Singh, S.K. Jain, Mechanical and thermophysical properties of cerium monopnictides, International Journal of Thermophysics 37 (2016) 33.
[22] V. Bhalla, R. Kumar, C. Tripathy, D. Singh, Mechanical and thermal properties of praseodymium monopnictides: an ultrasonic study; International Journal of Modern Physics B 27 (2013) 1350116.
[23] W. P. Mason, Effect of impurities and phonon processes on the ultrasonic attenuation of germanium, crystal quartz and silicon; In: Physical Acoustics, IIIB, Chapter 6, Academic Press, New York, 1965.
[24] J. Callaway, H.C. Von Baeyer, Effect of point imperfections on lattice thermal conductivity, Physical Review 120 (1960) 1149.
[25] M.C. Roufosse, P.G. Klemens, Lattice thermal conductivity of materials at high temperatures, Journal of Geophysical Research, 79 (1974) 703.
[26] P.G. Klemens, Thermal conductivity and lattice vibrational modes, Solid State Physics 7 (1958) 1.
[27] G.A. Slack, The thermal conductivity of nonmetallic crystals, Solid State Physics, 34 (1979) 1.
[28] R. Berman, Thermal Conductivity in Solids, Clarendon Press, Oxford, 1976.
[29] C.L. Julian, Theory of Heat Conduction in Rare-Gas Crystals, Physical Review 137, 1965, A128..
[30] A.T. Aldred, B.D. Dunlap, G.H. Lander, Magnetic properties of neptunium Laves phases: high-field measurements on NpAl2 and NpOs2, Physical Review B 14 (1976) 1276.
[31] M.P. Tosi, Cohesion of ionic solids in the Born model; In: Solid State Physics, Vol. 16, Academic Press, New York, 1964..
[32] D. Singh, S. Kaushik, S. Tripathi, V. Bhalla, A.K. Gupta, Temperature dependent elastic and ultrasonic properties of berkelium monopnictides,; Arabian Journal for Science and Engineering 39 (2014) 485.
[33] D.K. Pandey, D. Singh, V. Bhalla, S. Tripathi, R.R. Yadav, Temperature dependence of elastic and ultrasonic properties of ytterbium monopnictides, Indian Journal of Pure & Applied Physics 52 (2014) 330.
[34] J.P. Watt, L. Peselnick, Clarification of the Hashin‐Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries, Journal of Applied Physics 51 (1980) 1525.
[35] C.S.G. Cousin, New relations between elastic constants of different orders under central force interactions, Journal of Physics C: Solid State Physics, 4 (1971) 1117.
[36] Y. Hiki, A.V. Granato, Anharmonicity in noble metals: higher order elastic constants, Physical Review 144 (1966) 411.
[37] D. Singh, R.R. Yadav, A.K. Tiwari, Ultrasonic attenuation in semiconductors, Indian Journal of Pure & Applied Physics 40 (2002) 845.
[38] D.K. Pandey, D. Singh, R.R.Yadav, Ultrasonic wave propagation in IIIrd group nitrides, Applied Acoustics 68 (2007) 766.
[39] R.R.Yadav, D. Singh, Ultrasonic attenuation in lanthanum monochalcogenides, Journal of the Physical Society of Japan 70 (2001) 1825.
[40] V. Bhalla, D. Singh, S.K. Jain, R. Kumar, Ultrasonic attenuation in rare-earth monoarsenides, Pramana-Journal of Physics, 2016, doi: 10.1007/s12043-015-1183-5.
[41] D. Singh, S. Tripathi, D.K. Pandey, A.K. Gupta, D.K. Singh, J. Kumar, Ultrasonic wave propagation in semimetallic single crystals, Modern Physics Letters B 25 (2011) 2377..