On a five-dimensional scenario of massive gravity
Main Article Content
Abstract
Abstract. A study on a five-dimensional scenario of a ghost-free nonlinear massive gravity proposed by de Rham, Gabadadze, and Tolley (dRGT) will be presented in this article. In particular, we will show how to construct a five-dimensional massive graviton term using the Cayley-Hamilton theorem. Then some cosmological solutions such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini-(A)dS spacetimes will be solved for the five-dimensional dRGT theory thanks to the constant-like behavior of massive graviton terms under an assumption that the reference metric is compatible with the physical one.
Keywords: Massive gravity, higher dimensions, Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini-(A)dS spacetimes
References
[2] C. de Rham, G. Gabadadze, and A. J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101; C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020.
[3] D. G. Boulware and S. Deser, Can gravitation have a finite range, Phys. Rev. D 6 (1972) 3368.
[4] See, for example, an incomplete list: S. F. Hassan and R. A. Rosen, Resolving the ghost problem in nonlinear massive gravity, Phys. Rev. Lett. 108 (2012) 041101; Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, J. High Energy Phys. 04 (2012) 123; S. F. Hassan, R. A. Rosen, and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, J. High Energy Phys. 02 (2012) 026.
[5] C. de Rham, Massive gravity, Living Rev. Relativity 17 (2014) 7; K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671.
[6] T. Q. Do and W. F. Kao, Anisotropically expanding universe in massive gravity, Phys. Rev. D 88 (2013) 063006.
[7] S. F. Hassan and R. A. Rosen, Bimetric gravity from ghost-free massive gravity, J. High Energy Phys. 02 (2012) 126.
[8] K. Hinterbichler and R. A. Rosen, Interacting spin-2 fields, J. High Energy Phys. 07 (2012) 047; M. F. Paulos and A. J. Tolley, Massive gravity theories and limits of ghost-free bigravity models, J. High Energy Phys. 09 (2012) 002; Q. G. Huang, K. C. Zhang, and S. Y. Zhou, Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation, J. Cosmol. Astropart. Phys. 08 (2013) 050.
[9] T. Q. Do, Higher dimensional nonlinear massive gravity, Phys. Rev. D 93 (2016) 104003.
[10] S. Lipschutz and M. L. Lipson, Schaum’s Outline of Linear Algebra, McGraw-Hill, NewYork, 2009, p294.
[11] T. Q. Do, Higher dimensional massive bigravity, Phys. Rev. D 94 (2016) 044022.