Cyclic Inequality Forms with Power 1/2,1/3
Main Article Content
Abstract
The purpose of this paper is to establish inequalities between two terms
\begin{equation*}
F =\sum_{i=1}^{n}\sqrt{ax_{i}^{2}+bx_{i}x_{i+1}+cx_{i+1}^{2}+dx_i+ex_{i+1}+d };
\end{equation*}
\begin{equation*}
G =\sum_{i=1}^{n}\sqrt[3]{ax_{i}^{3}+bx_{i}^{2}x_{i+1}+cx_{i}x_{i+1}^{2}+dx_{i+1}^{3}},
\end{equation*}
and $\sum_{i=1}^{n}x_{i}$ for a sequence of cyclic positive real numbers $ (x_{i})_{i=1}^{n+1}$ with $x_{n+1}=x_{1}$. The results depends on the sign of expressions containing the coefficients $a,b,c,d$. The general case for $F$ is also investigated.
Keywords:
Cyclic inequality, power 1/2,1/3
References
[1] V. Cirtoaje, Algebraic Inequalities: Old and New methods, GIL Publishing House (2006)
[2] T. Tanriverdi, Reformulation of Shapiro’s inequality, International Mathematical Forum, Vol. 7, 2012, no. 43, 2125 - 2130.
[3] Z. Cvetkovski, Inequalities: Theorems, Techniques and Selected Problems, Springer (2012).
[4] G. Hardy, J. Littlewood and G. Polya: Inequalities, Cambridge University Press, Cambridge (1988).
[5] N.V. Luong, P.V. Hung, N.N Thang: Lectures on Cauchy inequalities, Hanoi National University Publisher (2014) (in Vietnamese).
[6] D.S. Mitrinovic, E.S. Barnes, D.C.B. Marsh, J.R.M. Radok: Elementary inequalities, P. Noordhoff LTD - Groningen - The Netherlands (1964)
[7] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink: Classical and New Inequalities in Analysis, Kluwer Academic Publishers (1993).
[8] B.G. Pacpatte: Mathematical inequalities, Elsevier (2005).
[2] T. Tanriverdi, Reformulation of Shapiro’s inequality, International Mathematical Forum, Vol. 7, 2012, no. 43, 2125 - 2130.
[3] Z. Cvetkovski, Inequalities: Theorems, Techniques and Selected Problems, Springer (2012).
[4] G. Hardy, J. Littlewood and G. Polya: Inequalities, Cambridge University Press, Cambridge (1988).
[5] N.V. Luong, P.V. Hung, N.N Thang: Lectures on Cauchy inequalities, Hanoi National University Publisher (2014) (in Vietnamese).
[6] D.S. Mitrinovic, E.S. Barnes, D.C.B. Marsh, J.R.M. Radok: Elementary inequalities, P. Noordhoff LTD - Groningen - The Netherlands (1964)
[7] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink: Classical and New Inequalities in Analysis, Kluwer Academic Publishers (1993).
[8] B.G. Pacpatte: Mathematical inequalities, Elsevier (2005).