Vibration and Nonlinear Dynamic Analysis of Imperfect Thin Eccentrically Stiffened Functionally Graded Plates in Thermal Environments
Main Article Content
Abstract
Abstract: This paper presents an analytical approach to investigate the vibration and nonlinear dynamic response of imperfect thin eccentrically stiffened functionally graded material (FGM) plates in thermal environments using the classical plate theory, stress function and the Lekhnitsky smeared stiffeners technique. Material properties are assumed to be temperature-dependent, and two types of thermal condition are investigated: the uniform temperature rise; and the temperature gradient through the thickness. Numerical results for vibration and nonlinear dynamic response of the imperfect eccentrically stiffened FGM plates are obtained by the Runge-Kutta method. The results show the influences of geometrical parameters, material properties, imperfections, eccentric stiffeners, and temperature on the vibration and nonlinear dynamic response of FGM plates. The numerical results in this paper are compared with the results reported in other publications.
Keywords: Vibration, nonlinear dynamic response, thin eccentrically stiffened FGM plates, classical plate theory, thermal environments.References
[2] Wu TL, Shukla KK, Huang JH. International Journal of Applied Mechanics and Engineering. 2006, 11, 679-98.
[3] Matsunaga H. J. Composite Structures. 2008, 82, 499-512.
[4] Allahverdizadeh A, Naeiand MN, Nikkhah Bahrami M. Journal of Sound and Vibration. 2008, 310, 966-84.
[5] Alijani F, Amabili M, Karagiozis K, Bakhtiari-Nejad F. Journal of Sound and Vibration. 2011, 30, 1432-54.
[6] Chorfi SM, Houmat A. J. Composite Structures. 2010, 92, 2573-81.
[7] Kim KD, Lomboy GR, Han SC. Journal of Composite Materials. 2008, 42, 485-511.
[8] Mollarazi HR, Foroutan M, Moradi-Dastjerdi R. Journal of Composite Materials. 2011, 46, 507-515.
[9] Reza Jahanghiry, Rajab Yahyazadeh, Naser Sharafkhani, Vahid A. Maleki. Science and Engineering of Composite Materials, doi: 10.1515/secm-2014-0079, 2014.
[10] Kamran Asemi, Manouchehr Salehi, Mehdi Akhlaghi. Science and Engineering of Composite Materials. doi: 10.1515/secm-2013-0346, 2014.
[11] Huang X, Shen HS. International Journal of Solid and Structures. 2014, 41, 2403-427.
[12] Kim YW. Journal of Sound and Vibration. 2005, 284, 531-49.
[13] Fakhari V, Ohadi A. Journal of Vibration and Control. 2010 DOI: 10.1177/1077546309354970.
[14] Bich DH, Nam VH, Phuong NT. Vietnam Journal of Mechanics. 2011, 33, 131-47.
[15] Bich DH, Dung DV, Nam VH. J. Composite Structures. 2012, 94, 2465-73.
[16] Duc ND. J. Composite Structures. 2013, 102, 306-14.
[17] Duc ND, Quan TQ. J. Composite Structures. 2013, 106, 590-600.
[18] Duc ND, Cong PH. J. Thin-Walled Structures. 2014, 75, 103-12.
[19] Bich DH, Duc ND, Quan TQ. International Journal of Mechanical Sciences. 2014, 80, 16-28.
[20] Quan TQ, Phuong Tran, Tuan ND, Duc ND. J. Composite structures. 2015, 126, 16-33.
[21] Duc ND, Cong PH. Journal of Vibration and Control. 2015, 21, 637-646.
[22] Duc ND, Quan TQ. Journal of Vibration and Control. 2015, 21, 1340-1362.
[23] Cong PH, An PTN, Duc ND. Science and Engineering of Composite Materials. Accepted for publication 2015.
[24] Duc ND. Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells. Vietnam National University Press, Hanoi, 2014.
[25] Volmir AS. Nonlinear dynamics of plates and shells. Science Edition. Moscow, 1972.
[26] Duc ND, Tung HV. J. Mechanics of Composite Materials. 2010, 46, 461-76.
[27] Reddy JN, Chin CD. Journal of thermal Stresses. 1998, 21, 593-626.