Nguyen Van Dat

Main Article Content

Abstract

In the discretized Kaluza-Klein theory (DKKT), the gauge fields emerge as components of gravity with a single coupling constant. Therefore, it provides a new approach to fix the parameters of the Standard Model, and in particular the Weinberg angle. The study results show that in the approach using DKKT, the predicted value of Weinberg angle is exactly the one measured in the electron-positron collider experiment at Q = 91.2 GeV/c. The result is compared to the one predicted by the group theoretic methods.

Keywords: Weinberg angle, Discretized Kaluza-Klein theory, DKKT

References

[1] T.P. Cheng, L.F. Li., Gauge theory of elementary particle physics, Clarendon Press, Oxford, 1984.
[2] L.B. Okun, Leptons and quarks, Elsevier, North-Holland, 2013.
[3] T.D. Lee, Particle physics and introduction to field theory, Contemporary Concepts in Physics Vol. 1, Harwood Academic, New York, 1981.
[4] C. Amsler, Review of Particle Physics - Electroweak model and constraints on new physics, Physics Letters (2008) B-667.
[5] D. Fairlie, Two consistent calculations of the Weinberg angle, Journal of Physics G: Nuclear Physics 5 (1979) L55.
[6] D. Fairlie, Higgs fields and the determination of the Weinberg angle, Physics Letters B 82 (1979) 97–100.
[7] G. Landi, N.A. Viet, K.C. Wali, Gravity and electromagnetism in noncommutative geometry, Physics Letters B 326 (1-2) (1994) 45-50.
[8] N.A. Viet, K.C. Wali, A discretized version of Kaluza–Klein theory with torsion and massive fields, International Journal of Modern Physics A 11 (13) (1996) 2403-2418.
[9] N.A. Viet, K.C. Wali, Noncommutative geometry and a discretized version of Kaluza-Klein theory with a finite field content, International Journal of Modern Physics A. 11(3) (1996): 533-551.
[10] N.A. Viet, K.C. Wali, Chiral spinors and gauge fields in noncommutative curved space-time, Physical Review D, 67(12) (2003) 124029.
[11] A.V. Nguyen, T.D. Pham, Non-Abelian gauge fields as components of gravity in the discretized Kaluza–Klein theory. Modern Physics Letters A. 32(18) (2017) 1750095.
[12] N.A. Viet, N.V. Dat, N.S. Han, K.C. Wali, Einstein-Yang-Mills-Dirac systems from the discretized Kaluza-Klein theory. Physical Review D. 95(3) (2017) 035030.
[13] A.H. Chamseddine, G. Felder, J. Fröhlich, Gravity in non-commutative geometry. Communications in Mathematical Physics 155(1) (1993) 205-217.
[14] A. Connes and J. Lott, Particle models and noncommutative geometry. Nucl. Phys. B, 18 (1991) 29-47.
[15] T. Kaluza, Zum unitätsproblem der physik, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) (1921) (arXiv: 1803.08616) 966-972.
[16] O. Klein, Quantum theory and five-dimensional theory of relativity, 1926 Z. Phys. 37 (1987) 895.