Pham Tri Dung, Nguyen Quang Bau, Nguyen Thi Thu Ha, Mai Thi Lan

Main Article Content

Abstract

This paper studies the structure of the Mullite system (3Al2O3.2SiO2) by Molecular Dynamics simulation (MDs) using the Born–Mayer–Huggins pair interaction and periodic boundary conditions. The simulation was performed with model of 5250 atoms at different pressure and at 3500 K temperature. The structural properties of the system were clarified through analysis of the pair radial distribution function, the distribution of coordination number, the bond angle and the link between adjacent TOx units.

Keywords: Molecular dynamics simulation, Mullite, structure, Al2O3-SiO2 system.

References

[1] M.C. Wilding, C.J. Benmore, J.K.R. Weber, High-Energy X-ray Diffraction from Aluminosilicate Liquids, J. Phys. Chem. B, 114(2010) 5742–5746.
[2] M.Schmucker, H.Schneider, New evidence for tetrahedral triclusters in aluminosilicate glasses, J. Non-Cryst. Solids, 311(2002) 211-215.
[3] B.T. Poe, C. Romano, N. Zotov, et al, Compression mechanisms in aluminosilicate melts: Raman and XANES spectroscopy of glasses quenched from pressures up to 10 GPa, Chem Geol, 174(2001) 21–31.
[4] V.V. Hoang, Dynamical heterogeneity and diffusion in high-density Al2O3-2SiO2 melts, Physica B, 400(2007) 278–286.
[5] A.Winkler, J. Horbach, W. Kob, et al, Structure and diffusion in amorphous aluminum silicate: a molecular dynamics computer simulation, J Chem Phys, 120(2004) 384–393.
[6] T. Takei, Y. Kameshima, A. Yasumori, K. Okada, Calculation of metastable immiscibility region in the SiO2-Al2O3 system using molecular dynamics simulation, J. Mater. Res, 15(2000) 186–193.
[7] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite, Journal of the European Ceramic Society, 28(2008) 329–344.
[8] M.F. Serraa, M.S. Conconia, M.R. Gaunaa, G. Suáreza,b, E.F. Agliettia, N.M. Rendtorffa, Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of ricehusk ash and alumina, phase evolution, sintering and microstructure, Journal of Asian Ceramic Societies, 4(2016) 61-67.
[9] L. Cormier, D.R. Neuville, Relationship between structure and glass transition temperature in low-silica calcium aluminosilicate glasses: the origin of the anomaly at low silica content, J Am Ceram Soc, 88(2010) 2292–2299.
[10] I.A. Aksay, D. M. Dabbs, M. Sarikaya, Mullite for structural Electronic and Optical applications, J Am Cerom Soc, 74(1991) 2343-2358.
[11] Patrick Pfleiderer, Jürgen Horbach, Kurt Binder, Structure and transport properties of amorphous aluminium silicates: Computer simulation studies, Chemical Geology, 229(2006) 186–197.
[12] M. Schmucker, H. Schneider, New evidence for tetrahedral triclusters in aluminosilicate glasses, J. Non-Cryst. Solids, 311(2002) 211-215.
[13] N.V. Yen, M.T. Lan, L.T. Vinh, N.V. Hong, Structural properties of liquid aluminosilicate with varying Al2O3/SiO2 ratios: Insight from analysis and visualization of molecular dynamics data, Modern Physics Letters B, 31(2017) 36-50.
[14] J.R. Allwardt, J.F. Stebbins, B.C. Schmidt, et al, Aluminum coordination and the densification of high-pressure aluminosilicate glasses, Am Mineralogist, 90(2005) 1218–1222.