Nguyen Thu Nhan, Mai Thi Lan

Main Article Content

Abstract

Liquid Na2O-4SiO2 has been constructed by molecular dynamics simulation at 1873 K, ambient pressure under periodic boundary conditions. To clarify the local environment of atoms we apply the oxygen simplex (OS) which is characterized by the size, forming oxygen atom types and the number of sodium located inside the OS. The simulation shows that the liquid comprises the Si-O network and sodium atoms are distributed through different type OSs forming by four O atoms. The number of sodium in particular simplex depends on the size and types of OS. There are five types of OS corresponding to values of n=0÷4. Here n is number of bridge oxygens which an OS passed through. We also found that numerous OSs connected to each other form a long channel where hundreds sodium atoms move. The observed distribution of sodium through Si-O network clearly indicates the structural and dynamics heterogeneity in sodium silicate liquid. 

Keywords: Simulation, oxygen simplex, sodium silicate, structural heterogeneity.

References

[1] L. Adkins, A. Cormack, Large-scale simulations of sodium silicate glasses, J. Non-Crys. Solids 357 (2011) 2538–2541. https://doi.org/10.1016/j.jnoncrysol.2011.03.012
[2] M. Pota, A. Pedone, G. Malavasi, C. Durante, M. Cocchi, M.C. Menziani, Molecular dynamics simulations of sodium silicate glasses: Optimization and limits of the computational procedure, Comput. Mater. Sci. 47 (2010) 739–751. https://doi.org/10.1016/j.commatsci.2009.10.017
[3] R. Hempelmann, C.J. Carlile, D. Beyer, C. Kaps, Sodium self-diffusion coefficient in sodium silicate glass by quasielastic neutron scattering, Z. Phys. B 95 (1994), 49-53. https://doi.org/10.1007/BF01316842
[4] F. Kargl, A. Meyer, M.M. Koza, H. Schober, Formation of channels for fast-ion diffusion in alkali silicate melts: A quasielastic neutron scattering study, Phys. Rev. B 74 (2006), 014304. https://doi.org/10.1103/PhysRevB.74.014304
[5] M. Ry´s, M. Müller, Thermal analysis of the Na2O-rich concentration region of the quasi-binary system Na2O–SiO2, Thermochim. Acta 502 (2010), 8–13. https://doi.org/10.1016/j.tca.2010.01.017
[6] L. Deng, S. Urata, Y. Takimoto, T. Miyajima, S.H. Hahn, A.C.T. van Duin, J. Du, Structural features of sodium silicate glasses from reactive force field‐based molecular dynamics simulations, ‎J. Am. Ceram. Soc, (2019). https://doi.org/10.1111/jace.16837
[7] A. Meyer, J. Horbach, W. Kob, F. Kargl, H. Schober, Channel Formation and Intermediate Range Order in Sodium Silicate Melts and Glasses, Phy. Rev. Let. 93(2004), 02780. https://doi.org/10.1103/PhysRevLett.93.027801
[8] A. Meyer, F. Kargl, J. Horbach, Channel diffusion in sodium silicate melts, Neutron News, 23 (2012), 35-37. https://doi.org/10.1080/10448632.2012.695716
[9] J. Horbach, W. Kob, K. Binder, Structural and dynamical properties of sodium silicate melts: an investigation by molecular dynamics computer simulation, Chemical Geology, 174 (2001), 87-101. https://doi.org/10.1016/S0009-2541(00)00309-0
[10] A.N. Cormack, J. Du, T.R. Zeitler, Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations, Phys. Chem. Chem. Phys. 4 (2002), 3193–3197. https://doi.org/10.1039/B201721K
[11] C.A. Angell, P.A. Cheeseman, S. Tamaddon, Computer simulation studies of migration mechanisms in ionic glasses and liquids J. Phys. C 43(1982), 381. https://doi.org/10.1051/jphyscol:1982972
[12] G.N. Greaves, S. Sen, Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56 (2007), 1. https://doi.org/10.1080/00018730601147426
[13] P.K. Hung, F. Noritake, N.V. Yen, L.T. San, Analysis for characterizing the structure and dynamics in sodium di-silicate liquid, J. Non-Crys. Solids 452 (2016), 14–22. https://doi.org/10.1016/j.jnoncrysol.2016.08.013
[14] H. Sakuma, K. Kawamura, Structure and dynamics of water on muscovite mica surfaces, Geo. Cos. Acta 73 (2009), 4100–4110. https://doi.org/10.1016/j.gca.2009.05.029
[15] F. Noritake, K. Kawamura, T. Yoshino, E. Takahashi, Molecular dynamics simulation and electrical conductivity measurement of Na2O.3SiO2 melt under high pressure; relationship between its structure and properties, J. Non-Crys. Solids 358 (2012), 3109–3118. https://doi.org/10.1016/j.jnoncrysol.2012.08.027
[16] J. Du, L.R. Corrales, Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study, J. Non-Crys. Solids 352 (2006), 3255–3269. https://doi.org/10.1016/j.jnoncrysol.2006.05.025
[17] H. Maekawa, T. Nakao, S. Shimokawa, T.Yokokawa, Coordination of sodium ions in NaAlO2–SiO2 melts: a high temperature 23Na NMR study, Phys Chem Minerals 24 (1997), 53–65. https://doi.org/10.1007/s002690050017
[18] Th.Voigtmann, J. Horbach, Slow dynamics in ion-conducting sodium silicate melts: Simulation and mode-coupling theory, Eur. Let., 74 (2008), 459. https://doi.org/10.1209/epl/i2006-10012-2
[19] M. Bauchy, B. Guillot, M. Micoulaut, N. Sator, Viscosity and viscosity anomalies of model silicates and magmas: A numerical investigation, Chem. Geol. 346 (2013), 47–56. https://doi.org/10.1016/j.chemgeo.2012.08.035
[20] H. Jabraoui, E.M. Achhal, A. Hasnaoui, J.L. Garden, Y. Vaills, S. Ouaskit, Molecular dynamics simulation of thermodynamic and structural properties of silicate glass: Effect of the alkali oxide modifiers, J. Non-Crys. Solids 448 (2016), 16–26. https://doi.org/10.1016/j.jnoncrysol.2016.06.030
[21] H.W. Nesbitt, G.S. Henderson, G.M. Bancroft, R.Ho, Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: Implications for spectroscopic studies and for the modified random network model, J. of Non-Crys. Solids 409 (2015) 139–148. https://doi.org/10.1016/j.jnoncrysol.2014.11.024