Optimization of Laminated Composite Plates for Maximum Biaxial Buckling Load
Main Article Content
Abstract
This paper proposes an optimization procedure for maximization of the biaxial buckling load of laminated composite plates using the gradient-based interior-point optimization algorithm. The fiber orientation angle and the thickness of each lamina are considered as continuous design variables of the problem. The effect of the number of layers, fiber orientation angles, thickness and length to thickness ratios on the buckling load of the laminated composite plates under biaxial compression is investigated. The effectiveness of the optimization procedure in this study is compared with previous works.
Keywords:
Optimum design, Fiber angles, Biaxial compression, Laminated composite plates, Abaqus2Matlab.
References
[1] J. Wang, K.M. Liew, M.J. Tan, S. Rajendran, Analysis of rectangular laminated composite plates via FSDT meshless method, Int. J. Mech. Sci. 44 (2002) 1275-93.
[2] A.J.M. Ferreira, L.M. Castro, C.M.C. Roque, J.N. Reddy, S. Bertoluzza, Buckling analysis of laminated plates by wavelets, Comput. Struct. 89 (2011) 626-30.
[3] H. Nguyen-Van, N. Mai-Duy, W. Karunasena, T. Tran-Cong, Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations, Comput. Struct. 89 (2011) 612-25.
[4] C.H. Thai, H. Nguyen-Xuan, N. Nguyen-Thanh, T.H. Le, T. Nguyen-Thoi, T. Rabczuk, Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach, Int. J. Numer. Meth. Eng. 91 (2012) 571-603.
[5] A.A. Khdeir, L. Librescu, Analysis of symmetric cross-ply elastic plates using a higher-order theory: part II: buckling and free vibration, Compos. Struct. 9 (1988) 259-277.
[6] M.E. Fares, A.M. Zenkour, Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories, Compos. Struct. 44 (1999) 279-287.
[7] A. Chakrabarti, A.H. Sheikh, Buckling of laminated composite plates by a new element based on higher order shear deformation theory, Mech. Adv. Mater. Struct. 10 (2003) 303-17.
[8] N.D. Duc, J. Lee, T. Nguyen-Thoi, P.T. Thang, Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations, J. Aeros. Sci. Techno. 68 (2017) 391-402.
[9] N.D. Duc, V.D. Quang, P.D. Nguyen, T.M. Chien, Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads, J. Appl. Comput. Mech. 4(4) (2018) 245-259.
[10] N.L. Le, T.P. Nguyen, H.N. Vu, T.T. Nguyen, M.D. Vu, An analytical approach of nonlinear thermo-mechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation, J. Appl. Comput. Mech. 6(2) (2020) 357-372.
[11] T.B. Kermanidis, G.N. Labeas, Static and stability analysis of composite plates by a semi-analytical method, Compos. Struct. 57(4) (1995) 673-679.
[12] R.P. Mohammad, E. Arabi, On the geometrically nonlinear analysis of composite axisymmetric shells, J. Appl. Comput. Mech. 4 (2018) 402-419.
[13] H.T. Hu, B.H. Lin, Buckling optimization of symmetrically laminated plates with various geometries and end conditions, Compos. Sci. Technol. 55 (1998) 277-285.
[14] G.B. Chai, K.T. Ooi, W. Khong, Buckling strength optimization of laminated composite plates, Compos. Struct. 46 (1) (1993) 77-82.
[15] R.L. Riche, R.T. Haftka, Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm, A.I.A.A. J. 31 (5) (1993) 951-956.
[16] Z.Jing, X. Fan, Q. Sun, Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm, Compos. Struct. 121 (2015) 225-236.
[17] H.G. Bargh, M.H. Sadr, Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm, Meccanica. 47 (2012) 719-730.
[18] F.S. Almeida, Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm, Compos. Struct. 143 (2016) 287-299.
[19] C. Huang, B. Kroplin, On the optimization of composite laminated plates, Eng. Computation. 12 (5) (1995) 403-414.
[20] M. Akbulut, F.O. Sonmez, Optimum design of composite laminates for minimum thickness, Compos. Struct. 86 (21-22) (2008) 1974-1982.
[21] V. Ho-Huu, T.D. Do-Thi, H. Dang-Trung, T. Vo-Duy, T. Nguyen-Thoi, Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method, Compos. Struct. 146 (2016) 132-147.
[22] G. Papazafeiropoulos, M. Muñiz-Calvente, E. Martínez-Pañeda, Abaqus2Matlab: A suitable tool for finite element post-processing, Adv. Eng. Softw. 105 (2017) 9-16.
[23] K.N.V, Chandrasekhar, V. Bhikshma, K.U. Bhaskara Reddy, Topology optimization of laminated composite plates and shells using optimality criteria, J. Appl. Comput. Mech. 7(1) (2021).
[2] A.J.M. Ferreira, L.M. Castro, C.M.C. Roque, J.N. Reddy, S. Bertoluzza, Buckling analysis of laminated plates by wavelets, Comput. Struct. 89 (2011) 626-30.
[3] H. Nguyen-Van, N. Mai-Duy, W. Karunasena, T. Tran-Cong, Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations, Comput. Struct. 89 (2011) 612-25.
[4] C.H. Thai, H. Nguyen-Xuan, N. Nguyen-Thanh, T.H. Le, T. Nguyen-Thoi, T. Rabczuk, Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach, Int. J. Numer. Meth. Eng. 91 (2012) 571-603.
[5] A.A. Khdeir, L. Librescu, Analysis of symmetric cross-ply elastic plates using a higher-order theory: part II: buckling and free vibration, Compos. Struct. 9 (1988) 259-277.
[6] M.E. Fares, A.M. Zenkour, Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories, Compos. Struct. 44 (1999) 279-287.
[7] A. Chakrabarti, A.H. Sheikh, Buckling of laminated composite plates by a new element based on higher order shear deformation theory, Mech. Adv. Mater. Struct. 10 (2003) 303-17.
[8] N.D. Duc, J. Lee, T. Nguyen-Thoi, P.T. Thang, Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations, J. Aeros. Sci. Techno. 68 (2017) 391-402.
[9] N.D. Duc, V.D. Quang, P.D. Nguyen, T.M. Chien, Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads, J. Appl. Comput. Mech. 4(4) (2018) 245-259.
[10] N.L. Le, T.P. Nguyen, H.N. Vu, T.T. Nguyen, M.D. Vu, An analytical approach of nonlinear thermo-mechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation, J. Appl. Comput. Mech. 6(2) (2020) 357-372.
[11] T.B. Kermanidis, G.N. Labeas, Static and stability analysis of composite plates by a semi-analytical method, Compos. Struct. 57(4) (1995) 673-679.
[12] R.P. Mohammad, E. Arabi, On the geometrically nonlinear analysis of composite axisymmetric shells, J. Appl. Comput. Mech. 4 (2018) 402-419.
[13] H.T. Hu, B.H. Lin, Buckling optimization of symmetrically laminated plates with various geometries and end conditions, Compos. Sci. Technol. 55 (1998) 277-285.
[14] G.B. Chai, K.T. Ooi, W. Khong, Buckling strength optimization of laminated composite plates, Compos. Struct. 46 (1) (1993) 77-82.
[15] R.L. Riche, R.T. Haftka, Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm, A.I.A.A. J. 31 (5) (1993) 951-956.
[16] Z.Jing, X. Fan, Q. Sun, Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm, Compos. Struct. 121 (2015) 225-236.
[17] H.G. Bargh, M.H. Sadr, Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm, Meccanica. 47 (2012) 719-730.
[18] F.S. Almeida, Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm, Compos. Struct. 143 (2016) 287-299.
[19] C. Huang, B. Kroplin, On the optimization of composite laminated plates, Eng. Computation. 12 (5) (1995) 403-414.
[20] M. Akbulut, F.O. Sonmez, Optimum design of composite laminates for minimum thickness, Compos. Struct. 86 (21-22) (2008) 1974-1982.
[21] V. Ho-Huu, T.D. Do-Thi, H. Dang-Trung, T. Vo-Duy, T. Nguyen-Thoi, Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method, Compos. Struct. 146 (2016) 132-147.
[22] G. Papazafeiropoulos, M. Muñiz-Calvente, E. Martínez-Pañeda, Abaqus2Matlab: A suitable tool for finite element post-processing, Adv. Eng. Softw. 105 (2017) 9-16.
[23] K.N.V, Chandrasekhar, V. Bhikshma, K.U. Bhaskara Reddy, Topology optimization of laminated composite plates and shells using optimality criteria, J. Appl. Comput. Mech. 7(1) (2021).